Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(U_{RC}=const=U\) khi \(Z_{L1}=2Z_C=R\)
Mặt khác L thay đổi để : \(U_{Lmax}:U_{Lmax}=\frac{U\sqrt{R^2+Z^2_C}}{R}=\frac{U\sqrt{2^2+1}}{2}=\frac{U\sqrt{5}}{2}\)
\(\Rightarrow chọn.D\)
+,có C=C1=>U_R=\frac{U.R}{\sqrt{R^2+(Zl-ZC1)^2}}
+,U R ko đổi =>Zl=ZC1
+,có c=C1/2=>ZC=2ZC1
=>U(AN)=U(RL)=\frac{U\sqrt{r^2+Z^2l}}{\sqrt{R^2+(Zl-2Z^2C1)}}=u=200V
Điểu chỉnh điện dung C của tụ thấy C = C1 và C = C2 thì có cùng giá trị hiệu dụng của tụ điện \(U_{C1} = U_{C2}\).
Khi đó để \(U_{Cmax}\) thì \(C=C_0 = \frac{C_1+C_2}{2}\)
Chọn đáp án.D.
\(\leftrightarrow\frac{u^2_R}{\left(\frac{8}{5}\right)^2}+\frac{u^2_L}{\left(\frac{5}{2}\right)^2}=1\)
Điều kiện :
\(\begin{cases}u_R\le\frac{8}{5}\left(V\right)\\u_L\le\frac{5}{2}\left(V\right)\end{cases}\)
\(\Rightarrow U_{\text{oR}}=\frac{8}{5}\left(V\right);U_{0L}=\frac{5}{2}\left(V\right)\)
\(\Rightarrow\frac{R}{\omega L}=\frac{8}{5}.\frac{2}{5}=\frac{16}{25}\leftrightarrow L=\frac{25R}{16L}=\frac{1}{2\pi}\left(H\right)\)
Đáp án C
Xem t = 0 là lúc cả hai mạch bắt đầu dao động
Phương trình hiệu điện thế trên 2 tụ C1 và C2 lần lượt có dạng
\(\begin{cases}u_1=12cos\left(\omega t\right)\left(V\right)\\u_2=6cos\left(\omega t\right)\left(V\right)\end{cases}\)
Độ chênh lệch Hiệu điện thế: \(\Delta u=u_1-u_2=6cos\left(\omega t\right)\left(V\right)\)
\(u_1-u_2=6cos\left(\omega t\right)=\pm3\Rightarrow cos\left(\omega t\right)=\pm0,5\Rightarrow cos\left(\frac{2\pi}{T}t\right)=\pm0,5\)
\(\Rightarrow\Delta t_{min}=\frac{T}{6}=\frac{10^{-6}}{3}s\)
Mạch có cộng hưởng điện thì \(w=\frac{1}{\sqrt{LC}}\)
Tần số: \(f_0=\frac{\omega}{2\pi}=\frac{1}{2\pi\sqrt{LC}}\)
GIẢI THÍCH: Đoạn mạch xoay chiều chỉ có điện trở, công suất tiêu thụ không phụ thuộc vào tần số.
Chọn C.