K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2021

\(a,\Leftrightarrow\left(x+8\right)\left(8x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=\dfrac{1}{8}\end{matrix}\right.\\ b,\Leftrightarrow\left(y-9\right)^2=0\Leftrightarrow y=9\)

6) c) x3 - x2 + x = 1

<=> x3 - x2 + x - 1 = 0

<=> (x3 - x2) + (x - 1) = 0

<=> x2 (x - 1) + (x - 1) = 0

<=> (x - 1) (x2 + 1) = 0

=> x - 1 = 0 hoặc x2 + 1 = 0

* x - 1 = 0 => x = 1

* x2 + 1 = 0 => x2 = -1 => x = -1

Vậy x = 1 hoặc x = -1

15 tháng 11 2019

Bài 5: 

a) Đặt   \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(\Rightarrow8A=3^{32}-1\)

\(\Rightarrow A=\frac{3^{32}-1}{8}\)

b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)

=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)

\(=\left(7x+6-5+6x\right)^2\)

\(=\left(13x+1\right)^2\)

3 tháng 10 2021

Bài 1:

\(P=3x^2+x-1\)

\(=3\left(x^2+\frac{1}{3}x-\frac{1}{3}\right)\)

\(=3\left(x^2+2x.\frac{1}{6}+\frac{1}{36}-\frac{13}{36}\right)\)

\(=3\left(x+\frac{1}{6}\right)^2-\frac{13}{12}\ge\frac{-13}{12}\)\(\forall x\)

Dấu '' = '' xảy ra khi: \(\left(x+\frac{1}{6}\right)^2=0\Rightarrow x=\frac{-1}{6}\)

Vậy \(MinP=\frac{-13}{12}\) khi \(x=\frac{-1}{6}\)

3 tháng 10 2021

Bài 2:

a) Không có điều kiện

b) Nghiệm vô tỉ

Bạn xem lại đề hai phần này nhé.

c) \(\left(x-2\right)^3-x^3+6x^2=14\)

\(\Rightarrow x^3-6x^2+12x-8-x^3+6x^2-14=0\)

\(\Rightarrow\left(x^3-x^3\right)+\left(-6x^2+6x^2\right)+12x+\left(-8-14\right)=0\)

\(\Rightarrow12x-22=0\)

\(\Rightarrow x=\frac{11}{6}\)

d) \(8x^2+30x+7=0\)

\(\Rightarrow8x^2+28x+2x+7=0\)

\(\Rightarrow\left(8x^2+28x\right)+\left(2x+7\right)=0\)

\(\Rightarrow4x\left(2x+7\right)+\left(2x+7\right)=0\)

\(\Rightarrow\left(4x+1\right)\left(2x+7\right)=0\)

\(\Rightarrow\orbr{\begin{cases}4x+1=0\\2x+7=0\end{cases}}\Rightarrow\orbr{\begin{cases}4x=-1\\2x=-7\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-1}{4}\\x=\frac{-7}{2}\end{cases}}\)

8 tháng 7 2019

3. Dễ dàng phân tích được hiệu các bình phương 2 số lẻ bất kỳ bằng :

\(\left(2n+3\right)^2-\left(2n+1\right)^2=\left[\left(2n+3\right)-\left(2n+1\right)\right].\left[\left(2n+3\right)+\left(2n+1\right)\right]\)

\(=2.\left(4n+4\right)=8n+8=8\left(n+1\right)⋮8\left(đpcm\right).\)

27 tháng 10 2020

Bài 2:

a) \(11x^2-5x=0\)

\(\Leftrightarrow x\left(11x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\11x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\11x=5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{11}\end{cases}}\)

Vậy \(x=0\)hoặc \(x=\frac{5}{11}\)

b) \(x^3-6x^2+12x=8\)

\(\Leftrightarrow x^3-6x^2+12x-8=0\)

\(\Leftrightarrow x^3-3.2.x^2+3.2^2.x-2^3=0\)

\(\Leftrightarrow\left(x-2\right)^3=0\)

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

Vậy \(x=2\)

27 tháng 10 2020

Thực hiện phép tính ( tự làm nhé -- )

Tìm x

a) 11x2 - 5x = 0

⇔ x( 11x - 5 ) = 0

⇔ x = 0 hoặc 11x - 5 = 0

⇔ x = 0 hoặc x = 5/11

b) x3 - 6x2 + 12x = 8

⇔ x3 - 6x2 + 12x - 8 = 0

⇔ ( x - 2 )3 = 0

⇔ x - 2 = 0

⇔ x = 2

28 tháng 8 2020

a) Ta có: \(\left(3x+5\right)^2-\left(x+3\right)^2-8x\left(x+3\right)=12\)

\(\Leftrightarrow9x^2+30x+25-x^2-6x-9-8x^2-24x-12=0\)

\(\Leftrightarrow4=0\) (vô lý)

=> pt vô nghiệm

b) \(\left(2x-5\right)^2-\left(x-2\right)^2-\left(x-1\right)\left(3x+2\right)=8\)

\(\Leftrightarrow4x^2-20x+25-x^2+4x-4-3x^2+x+2-8=0\)

\(\Leftrightarrow-15x=-13\)

\(\Rightarrow x=\frac{13}{15}\)

28 tháng 8 2020

c) \(-2x\left(x+3\right)+\left(2x-5\right)^2=-3\left(x+2\right)\)

\(\Leftrightarrow-2x^2-6x+4x^2-20x+25+3x+6=0\)

\(\Leftrightarrow2x^2-23x+31=0\)

\(\Leftrightarrow2\left(x^2-\frac{23}{2}x+\frac{529}{16}\right)-\frac{281}{8}=0\)

\(\Leftrightarrow\left(x-\frac{23}{4}\right)^2-\left(\frac{\sqrt{281}}{4}\right)^2=0\)

\(\Leftrightarrow\left(x-\frac{23+\sqrt{281}}{4}\right)\left(x-\frac{23-\sqrt{281}}{4}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\frac{23+\sqrt{281}}{4}=0\\x-\frac{23-\sqrt{281}}{4}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{23+\sqrt{281}}{4}\\x=\frac{23-\sqrt{281}}{4}\end{cases}}\)

a.Ta có:\(2x^2-4xy+4y^2+2x+1=0\)

\(\Rightarrow\left[x^2-2x\left(2y\right)+\left(2y\right)^2\right]+\left(x^2+2x+1\right)=0\)

\(\Rightarrow\left(x-2y\right)^2+\left(x+1\right)^2=0\)

Dấu "=" xảy ra khi và chỉ khi x-2y=0 và x+1=0

Suy ra x=-1;y=-1/2

b.Ta có:\(x^2-6x+y^2-6y+21=3\)

\(\Rightarrow\left(x^2-6x+9\right)+\left(y^2-6y+9\right)+3-3=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y-3\right)^2=0\)

Dấu "=" xảy ra khi và chỉ khi x-3=y-3=0

Suy ra x=y=3

c.Ta có:\(2x^2-8x+y^2-2xy+16=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-8x+16\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-4\right)^2=0\)

Dấu "=" xảy ra khi và chỉ khi:x-y=x-4=0

Suy ra x=y=4

6 tháng 8 2020

a) 2x2 - 4xy + 4y2 + 2x + 1 = 0

<=> x2 - 4xy + 4y2 + x2 + 2x + 1 = 0

<=> ( x - 2y )2 + ( x + 1 )2 = 0

<=> \(\hept{\begin{cases}x-2y=0\\x+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-\frac{1}{2}\end{cases}}\)

b) x2 - 6x + y2 - 6y + 21 = 3

<=> x2 - 6x + y2 - 6y + 21 - 3 = 0

<=> x2 - 6x + y2 - 6y + 18 = 0

<=> x2 - 6x + 9 + y2 - 6y + 9 = 0

<=> ( x - 3 )2 + ( y - 3 )2 = 0

<=> \(\hept{\begin{cases}x-3=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=3\end{cases}}\)

c) 2x2 - 8x + y2 - 2xy + 16 = 0

<=> x2 - 2xy + y2 + x2 - 8x + 16 = 0

<=> ( x - y )2 + ( x - 4 )2 = 0

<=> \(\hept{\begin{cases}x-y=0\\x-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=4\end{cases}}\)

Đợi nghĩ ra cách ngắn hơn nhá :)) 

\(1)\)\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...-8x^2+8x-5\)

\(B=-7x^{15}+\left(8x^{15}-8x^{14}\right)+\left(8x^{13}-8x^{12}\right)+...+\left(8x^3-8x^2\right)+\left(8x-8\right)+3\)

\(B=-7x^{15}+8x^{14}\left(x-1\right)+8x^{12}\left(x-1\right)+...+8x^2\left(x-1\right)+8\left(x-1\right)+3\)

\(B=-7x^{15}+8\left(x-1\right)\left(x^{14}+x^{12}+...+x^2+1\right)+3\)

\(B=-7x^{15}+8\left(x-1\right)\left[x^{12}\left(x^2+1\right)+x^8\left(x^2+1\right)+...+\left(x^2+1\right)\right]+3\)

\(B=-7x^{15}+8\left(x-1\right)\left(x^2+1\right)\left(x^{12}+x^8+...+1\right)+3\)

\(B=-7x^{15}+8\left(x-1\right)\left(x^2+1\right)\left[x^8\left(x^4+1\right)+\left(x^4+1\right)\right]+3\)

\(x=7\)\(\Rightarrow\)\(x+1=8\)

\(B=-7x^{15}+\left(x+1\right)\left(x-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)+3\)

\(B=-7x^{15}+\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\)

\(B=-7x^{15}+\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)\)

\(B=-7x^{15}+\left(x^8-1\right)\left(x^8+1\right)=-7x^{15}+x^{16}-1=x^{15}\left(x-7\right)-1=-1\)

...

22 tháng 8 2021

\(x\left(2-3x\right)+\left(3x^2-x^2\right):x\)

\(=2x-3x^2+3x^2-x\)

\(=x\)

\(2x\left(x-3y\right)-\left(8x^3y-12x^2y^2\right):2xy\)

\(=2x^2-6xy-4x^2+6xy\)

\(=-2x^2\)