\(\frac{a}{b}=\frac{c}{d}\ne\pm1\) và \(c\ne0\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2018

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a}{c}.\frac{a}{c}=\frac{b}{d}.\frac{b}{d}=\frac{ab}{cd}=\left(\frac{a-b}{c-d}\right)^2\)

\(\Leftrightarrow\frac{ab}{cd}=\left(\frac{a-b}{c-d}\right)^2\)

đpcm

16 tháng 12 2018

Bạn Kudo Shinichi làm đúng đó !

28 tháng 10 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(=>\hept{\begin{cases}a=b.k\\c=d.k\end{cases}}\)

\(\left(\frac{a-b}{c-d}\right)^2=\left(\frac{b.k-b}{d.k-d}\right)^2=\left(\frac{b.\left(k-1\right)}{d.\left(k-1\right)}\right)^2\)\(=\frac{\left(b^2.\left(k-1\right)^2\right)}{\left(d^2.\left(k-1\right)^2\right)}=\frac{b^2.\left(k-1\right)^2}{d^2.\left(k-1\right)^2}=\frac{b^2}{d^2}\)\(\left(1\right)\)

\(\frac{ab}{cd}=\frac{b.k.b}{d.k.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2) => \(\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\)

28 tháng 10 2017

Đặt \(\frac{a}{b}\)\(\frac{c}{d}\)= k  => a= bk ; c = dk 
\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\) = \(\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}\)\(\frac{b^2.\left(k-1\right)^2}{d^2.\left(k-1\right)^2}\)\(\frac{b^2}{d^2}\) (1)

\(\frac{ab}{cd}\)\(\frac{bk.b}{dk.d}\)\(\frac{b^2}{d^2}\) (2)

Từ (1) và (2) ->> \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\) = \(\frac{ab}{cd}\) 

9 tháng 11 2018

a) sai đề rồi bn 

b) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}=\left(\frac{a+b}{c+d}\right)^3\)(tính chất dãy tỉ số bằng nhau) (1)

\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}=\frac{a^3-b^3}{c^3-d^3}\)(2)

từ (1) và (2)\(\Rightarrow\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\left(đpcm\right)\)

21 tháng 10 2018

\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)

đặt: \(\frac{a}{c}=\frac{b}{d}=t\) Áp dụng Tính chất dãy tỉ số bằng nhau:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=t\Leftrightarrow\left(\frac{a-b}{c-d}\right)^2=t^2\)

\(\frac{a}{c}=\frac{b}{d}=t\Leftrightarrow\frac{ab}{cd}=t^2\)

\(\Rightarrowđpcm\)

30 tháng 10 2017

Ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

\(\Leftrightarrow\left(a^2+b^2\right)\cdot cd=\left(c^2+d^2\right)\cdot ab\)

\(\Rightarrow a^2\cdot cd+b^2\cdot cd=c^2\cdot ab+d^2\cdot ab\)

\(\Rightarrow a^2\cdot cd+b^2\cdot cd-c^2\cdot ab-d^2\cdot ab=0\)

\(\Rightarrow\left(a^2\cdot cd-c^2\cdot ab\right)+\left(b^2\cdot cd-d^2\cdot ab\right)=0\)

\(\Rightarrow ac\cdot\left(ad-bc\right)+bd\cdot\left(bc-ad\right)=0\)

\(\Rightarrow ac\cdot\left(ad-bc\right)-bd\cdot\left(ad-bc\right)=0\)

\(\Rightarrow\left(ac-bd\right)\cdot\left(ad-bc\right)=0\)

Tự làm tiếp nhé.......

30 tháng 10 2017

bạn ơi còn cách nào ko

14 tháng 12 2017

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\frac{1}{c}=\frac{1}{2}\left(\frac{a+b}{ab}\right)\)

\(\Rightarrow2ab=c\left(a+b\right)\)

\(\Rightarrow ab+ab=ca+bc\)

\(\Rightarrow ab-cb=ac-ab\)

\(\Rightarrow b\left(a-c\right)=a\left(c-b\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)

Trả lời :........................................................

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}......................\)

Hk tốt,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Học sinh giỏi 6A

24 tháng 10 2016

1

24 tháng 10 2016

1

1 tháng 10 2017

1, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{3a}{3c}=\frac{b}{d}=\frac{3a+b}{3c+d}\Rightarrow\frac{a}{c}=\frac{3a+b}{3c+d}\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)

2, a, Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{ab}{cd}\)

\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{b}{d}\cdot\frac{b}{d}\Rightarrow\frac{ab}{cd}=\frac{b^2}{d^2}\)

\(\Rightarrow\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)

b, Ta có: \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{a-b}{c-d}\cdot\frac{a-b}{c-d}\Rightarrow\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

8 tháng 10 2016

Bạn có thể tham khảo tại đây: Câu hỏi của nguyễn hoàng lê thi - Toán lớp 7 | Học trực tuyến