K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: 

1: Ta có: \(16\sqrt{9}-9\sqrt{16}\)

\(=16\cdot3-9\cdot4\)

\(=48-36=12\)

2:

a) Thay x=2 và y=8 vào hàm số \(y=a\cdot x^2\), ta được:

\(a\cdot2^2=8\)

\(\Leftrightarrow4a=8\)

hay a=2

Vậy: a=2

16 tháng 5 2021

a) \(\sqrt{4x^2-4x+9}=3\)

Vì \(4x^2-4x+9=\left(2x-1\right)^2+8>0\)( Với mọi x )

Nên \(\sqrt{4x^2-4x+9}=3\)

\(4x^2-4x+9=9\)

\(4x^2-4x=0\)

\(4x\left(x-1\right)=0\)

\(\left[{}\begin{matrix}4x=0\\x-1=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)là nghiệm

NV
26 tháng 3 2022

a.

Phương trình có 2 nghiệm dương pb khi:

\(\left\{{}\begin{matrix}m+2\ne0\\\Delta'=\left(m+1\right)^2-\left(m+2\right)\left(m-4\right)>0\\x_1+x_2=\dfrac{2\left(m+1\right)}{m+2}>0\\x_1x_2=\dfrac{m-4}{m+2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-2\\4m+9>0\\\dfrac{m+1}{m+2}>0\\\dfrac{m-4}{m+2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne-2\\m>-\dfrac{9}{4}\\\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\\\left[{}\begin{matrix}m>4\\m< -2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m>4\\-\dfrac{9}{4}< m< -2\end{matrix}\right.\)

NV
26 tháng 3 2022

b.

Pt có 2 nghiệm khi: \(\left\{{}\begin{matrix}m\ne-2\\\Delta'=4m+9\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne-2\\m\ge-\dfrac{9}{4}\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{m+2}\\x_1x_2=\dfrac{m-4}{m+2}\end{matrix}\right.\)

\(3\left(x_1+x_2\right)=5x_1x_2\)

\(\Leftrightarrow\dfrac{6\left(m+1\right)}{m+2}=\dfrac{5\left(m-4\right)}{m+2}\)

\(\Rightarrow6\left(m+1\right)=5\left(m-4\right)\)

\(\Leftrightarrow m=-26< -\dfrac{9}{4}\left(loại\right)\)

Vậy ko tồn tại m thỏa mãn yêu cầu 

AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Lời giải:

a) Khi $m=1$ thì pt trở thành:

$x^2-2x-5=0$

$\Leftrightarrow (x-1)^2=6$

$\Rightarrow x=1\pm \sqrt{6}$ 

b) Để $x_1=3$ là nghiệm của pt thì:

$3^2-2.m.3+2m-7=0\Leftrightarrow m=\frac{1}{2}$

Nghiệm còn lại $x_2=(x_1+x_2)-x_1=2m-x_1=2.\frac{1}{2}-3=-2$

c) 

$\Delta'= m^2-(2m-7)=(m-1)^2+6>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm phân biệt $x_1,x_2$

Theo định lý Viet: $x_1+x_2=2m$ và $x_1x_2=2m-7$

Khi đó: 

Để $x_1^2+x_2^2=13$

$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=13$

$\Leftrightarrow (2m)^2-2(2m-7)=13$

$\Leftrightarrow 4m^2-4m+1=0\Leftrightarrow (2m-1)^2=0\Leftrightarrow m=\frac{1}{2}$

d) 

$x_1^2+x_2^2+x_1x_2=(x_1+x_2)^2-x_1x_2$

$=(2m)^2-(2m-7)=4m^2-2m+7=(2m-\frac{1}{2})^2+\frac{27}{4}\geq \frac{27}{4}$
Vậy $x_1^2+x_2^2+x_1x_2$ đạt min bằng $\frac{27}{4}$. Giá trị này đạt tại $m=\frac{1}{4}$

 

NV
25 tháng 3 2022

\(\Delta=\left(4m+1\right)^2-8\left(m-4\right)=16m^2+33>0;\forall m\)

Pt luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-4m-1\\x_1x_2=2m-8\end{matrix}\right.\)

a. Kết hợp hệ thức Viet và đề bài: \(\left\{{}\begin{matrix}x_1+x_2=-4m-1\\x_2-x_1=17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=-2m-9\\x_2=-2m+8\end{matrix}\right.\)

Thế vào \(x_1x_2=2m-8\)

\(\Rightarrow\left(-2m-9\right)\left(-2m+8\right)=2m-8\)

\(\Leftrightarrow m^2-9m+20=0\Rightarrow\left[{}\begin{matrix}m=4\\m=5\end{matrix}\right.\)

NV
25 tháng 3 2022

b.

\(A=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(A=\left(4m+1\right)^2-8\left(m-4\right)\)

\(A=16m^2+33\ge33\)

\(A_{min}=33\) khi \(m=0\)

c.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-4m-1\\x_1x_2=2m-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-4m-1\\2x_1x_2=4m-16\end{matrix}\right.\)

Cộng vế với vế:

\(x_1+x_2+2x_1x_2=-17\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m

19 tháng 5 2021

a,Có \(\Delta=4\left(m+2\right)^2-4.-\left(4m+12\right)=4m^2+32m+64=4\left(m+4\right)^2\ge0\forall m\)

=> Phương trình luôn có nghiệm với mọi m

b,Phương trình có nghiệm \(\left[{}\begin{matrix}x=\dfrac{-2\left(m+2\right)+2\left(m+4\right)}{2}=2\\x=\dfrac{-2\left(m+2\right)-2\left(m+4\right)}{2}=-2m-6\end{matrix}\right.\) (ở đây không cần chia trường hợp của m bởi khi chia trường hợp thì x chỉ đổi giá trị cho nhau)

TH1: \(x_1=x_2^2\Leftrightarrow4=\left(-2m-6\right)^2\)\(\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=-4\end{matrix}\right.\) (Thay vào pt thấy không thỏa mãn)

TH2:\(x_1=x_2^2\Leftrightarrow-2m-6=2^2\)\(\Leftrightarrow m=-5\) (Thay vào pt thấy thỏa mãn)

Vậy ...

31 tháng 1 2023

`a)` Thay `m=\sqrt{3}+1` vào hệ ptr có:

`{(\sqrt{3}x-2y=1),(3x+(\sqrt{3}+1)y=1):}`

`<=>{(3x-2\sqrt{3}y=\sqrt{3}),(3x+(\sqrt{3}+1)y=1):}`

`<=>{((3\sqrt{3}+1)y=1-\sqrt{3}),(\sqrt{3}x-2y=1):}`

`<=>{(y=[-5+2\sqrt{3}]/13),(\sqrt{3}x-2[-5+2\sqrt{3}]/13=1):}`

`<=>{(x=[4+\sqrt{3}]/13),(y=[-5+2\sqrt{3}]/13):}`

`b){((m-1)x-2y=1),(3x+my=1):}`

`<=>{(x=[1-my]/3),((m-1)[1-my]/3-2y=1):}`

`<=>{(x=[1-my]/3),(m-m^2y-1+my-6y=3):}`

`<=>{(x=[1-my]/3),((-m^2+m-6)y=4-m):}`

`<=>{(x=[1-my]/3),(y=[4-m]/[-m^2+m-6]):}`

   Mà `-m^2+m-6` luôn `ne 0`

   `=>AA m` thì đều tìm được `1` giá trị `y` từ đó tìm được `x`

 `=>AA m` thì hệ ptr có `1` nghiệm duy nhất

`c){((m-1)x-2y=1),(3x+my=1):}`

`<=>{(x=[1-my]/3),(y=[4-m]/[-m^2+m-6]):}`

`<=>{(x=(1-m[4-m]/[-m^2+m-6]):3),(y=[4-m]/[-m^2+m-6]):}`

`<=>{(x=[-m^2+m-6-4m+m^2]/[-3m^2+3m-18]),(y=[4-m]/[-m^2+m-6]):}`

`<=>{(x=[-3m-6]/[3(-m^2+m-6)]),(y=[4-m]/[-m^2+m-6]):}`

Ta có: `x-y=[-3m-6]/[3(-m^2+m-6)]-[4-m]/[-m^2+m-6]`

                `=[-3m-6-12+3m]/[-3(m^2-m+6)]`

                `=[-18]/[-3(m^2-m+6)]=6/[(m-1/2)^2+23/4]`

Vì `(m-1/2)^2+23/4 >= 23/4`

`<=>6/[(m-1/2)^2+23/4] <= 24/23`

Hay `x-y <= 24/23`

Dấu "`=`" xảy ra `<=>m-1/2=0<=>m=1/2`

NV
4 tháng 1 2021

a. Bạn tự giải

b. Thế cặp nghiệm x=-1, y=3 vào hệ ban đầu ta được:

\(\left\{{}\begin{matrix}-1+3m=9\\-m-9=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3m=10\\-m=13\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

c. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=9m\\mx-3y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+3\right)y=9m-4\\mx-3y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{9m-4}{m^2+3}\\x=\dfrac{4m+27}{m^2+3}\end{matrix}\right.\)

Vậy với mọi m thì hệ luôn có nghiệm duy nhất như trên