Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi quãng đường đi từ nhà đến trường là AC, từ nhà đến trạm xe là AB, từ trạm xe đến trường là BC
Ta có
\(t_1=\frac{AB}{12}\)
\(t_2=15'=\frac{1}{4}h\)
\(t_3=\frac{AC-AB}{30}=\frac{24-AB}{30}\)
Nếu đạp xe từ nhà đến trường thì mất:
\(t'=\frac{24}{12}=2\left(h\right)\)
Mà
\(t_1+t_2+t_3\)= 2-0,5
\(\frac{AB}{12}+\frac{24-AB}{30}+\frac{1}{4}=1,5\)
=> AB=18 (km)
Thời gian sinh viên đã đi xe buýt là
\(t_4=\frac{24-18}{30}=\frac{1}{5}=0,2\left(h\right)\)
sai rồi bạn ơi \(\dfrac{AB}{12}+\dfrac{24-AB}{30}+\dfrac{1}{4}=1.5\)
=>AB=9km
Vậy mới đúng
* Đề câu a hình như là tính v2 bạn nhé, vì v1 đề đã cho biết rồi
________________________________________
a) Thời gian đi của người anh là
\(t_1=\frac{S}{2v_1}+\frac{S}{2v_2}=\frac{S}{2}\left(\frac{1}{v_1}+\frac{1}{v_2}\right)\)
Mà vtb=8 km/h
=> \(\frac{S}{\frac{S}{2}\left(\frac{1}{v_1}+\frac{1}{v_2}\right)}=\frac{2v_1v_2}{v_1+v_2}=8\)
Thay v1=5
=> v2= 20
Mặt khác ta có
\(\frac{AC}{v_1}=\frac{BC}{v_2}=\frac{AC+BC}{5+20}=\frac{S}{25}\)=t' ( Trong đó C là điểm mà người em được bạn chở đi, còn AB là quãng đường từ nhà đến trường)
=> \(v_{tb}=\frac{S}{t'}=\frac{S}{\frac{S}{25}}=25\)( km/h)
Đổi: \(S=1,6km=1600m\)
Thời gian học sinh đó đi từ nhà đến trường:
\(t=\dfrac{S}{v}=\dfrac{1600}{4}=400s\)\(=6'40s\)
Bài 1:
Gọi v là vận tốc học sinh ban đầu
v' là vận tốc khi tăng tốc để đến đúng dự định
thời gian đi theo dự đinh là \(t_1=\frac{s}{v}=\frac{6}{v}\)
quãng đường thực thực tế đi là : 1/4.6 + 1/4.6 +6=9
thời gian thực tế đi là : \(t_2=\frac{s_2}{v}=\frac{9}{v}\)
ta có :
\(\frac{6}{v}=\frac{9}{v}-\frac{1}{4}\Leftrightarrow\frac{1}{4}=\frac{3}{v}\Leftrightarrow v=12\) (km/h)
b/ thời gian thực tế là :
\(\frac{7,5}{v'}+\frac{1,5}{v}\)
cho thời gian thực tế bằng thời gian dự định nên có :
\(\frac{6}{v}=\frac{7,5}{v'}+\frac{1,5}{v}\Leftrightarrow\frac{4,5}{v}=\frac{7,5}{v'}\Leftrightarrow\frac{4,5}{12}=\frac{7,5}{v'}\Leftrightarrow v'=20\)
Bài 2:
a) từ 7h -> 9h người đi bộ đi được số km là : 4 x 2 =8 (km)
tư 9h -> 10h người đi bộ đi được thêm 4 x 1 = 4 (km)
vậy trông khoảng thời gian từ 7h->9h người đi bộ đi được tổng số km là:
8+4=12
cũng nhận thấy sau 1h, có nghĩa là từ 9h-> 10h, người đi xe đạp đi được số km là: 12 x 1 =12 (km)
vậy 2 người gặp nhau luc 10h
nơi gặp nhau cách A 12 km
b) gọi t là thời gian 2 người cách nhau 2 km (t>0)
theo phần a ta tính được đọ dài của quãng đương AB là :
12+12=24 (km)
sau t giờ thì người đi bộ đi được số km là: 4t (km)
sau t giờ người đi xe đạp đi được số km là :12t (km)
vậy ta sẽ có tổng quãng đường mà người đi bộ và người đi xe đạp đi được là
4t + 12t (km)
sau t giờ 2 người cách nhau 2 km có nghĩa :
4t + 12t = 24- 2
<=>16t = 22
<=> t =1.375 (h)
=> lúc đó là 1.375 + 7 = 8.375 (giờ)
vậy lúc 8.375h hai người cách nhau 2km
Bài 3:
a)Đổi : 15p = 1/4h, 30p = 1/2 h
Thời gian An đi là từ A đến B là:
6 : 12 = 1/2 (h)
Thời gian Bình đi từ A đến B là:
1/2 + 1/2 - 1/4 = 3/4 (h)
Vận tốc của Bình là:
6 : 3/4 = 8 (km/h)
b) Để đến nơi cùng lúc với An, Bình phải đi tới B với thời gian là :
1/2 - 1/4 = 1/4 (h)
Vậy Bình phải đi với vận tốc là :
6 : 1/4 = 24 (km/h)
Thời gian đi:
\(t=\dfrac{S}{v}=\dfrac{5,4\cdot1000}{9}=600s=10'=\dfrac{1}{6}h\)
Câu 11:
\(s_{AB}=v_{AB}\cdot t_{AB}=40\cdot1,5=60\left(km\right)\)
Câu 12:
\(v=\dfrac{s}{t}=\dfrac{4}{0,6}=\dfrac{20}{3}\left(\dfrac{km}{h}\right)\)
Câu 13:
\(v=\dfrac{s}{t}=\dfrac{0,4}{\dfrac{50}{60}}=0,48\left(\dfrac{km}{h}\right)\)
Câu 14:
\(v_{tb}=\dfrac{s'+s''}{t'+t''}=\dfrac{110+150}{60+40}=2,6\left(\dfrac{m}{s}\right)\)
Câu 15:
\(s=v\cdot t=5\cdot0,5=2,5\left(km\right)\)
Câu 16:
\(t=\dfrac{s}{v}=\dfrac{8,2}{2\cdot3,6}=\dfrac{41}{36}\left(h\right)\)