K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 10 2021

Lời giải:
Nếu $p$ chia $3$ dư $1$ thì $p+2$ chia hết cho $3$. Mà $p+2>3$ nên $p+2$ không là số nguyên tố (trái yêu cầu đề)

Nếu $p$ chia $3$ dư $2$ thì $p+4$ chia hết cho $3$. Mà $p+4>3$ nên $p+4$ không là số nguyên tố (trái yêu cầu đề) 

Do đó $p$ chia hết cho $3$. Mà $p$ là snt nên $p=3$.

Đáp án A.

30 tháng 10 2021

A

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp sốBài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhấtBài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ướcBài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng...
Đọc tiếp

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 ( Đây là bài của chịnhunglth đó ạ)
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố

Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p

Các bạn có thể trả lời vài câu hỏi cũng được.Bạn nào trả lời được nhiều mình sẽ ủng hộ cho nha

0
Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp sốBài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhấtBài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ướcBài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng...
Đọc tiếp

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố

Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p

2
4 tháng 8 2017

K MIK NHA BN !!!!!!

B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1 
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1 

* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số 

* xét p nguyên tố khác 3 => 8p không chia hết cho 3 
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3 
=> (8p-1)(8p+1) chia hết cho 3 

Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số  

B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1) 
* Xét k = 1 
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2) 
* Xét k lẻ mà k > 1 
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn 
=> k + 1 là hợp số 
=> Dãy số không có nhiều hơn 2 số nguyên tố (3) 
* Xét k chẵn , khi đó k >= 2 
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn 
=> k + 2 và k + 10 là hợp số 
=> Dãy số không có nhiều hơn 1 số nguyên tố (4) 
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất

B3:Số 36=(2^2).(3^2)

Số này có 9 ước là:1;2;3;4;6;9;12;18;36

Số tự nhiên nhỏ nhất có 6 ước là số 12.

Cho tập hợp ước của 12 là B.

B={1;2;3;4;6;12}

K MIK NHA BN !!!!!!

4 tháng 8 2017

cảm ơn bạn nha

mình k cho ban roi do

26 tháng 2 2017

tớ chỉ biết làm phần d thôi

            Vì p là số nguyên tố nên \(\Rightarrow\) p có dạng 3k,3k+1,3k+2

        +) Nếu p =3k \(\Rightarrow\)p =3 thì p+2=3+2=5

                                                  p+4=3+4=7 là số nguyên tố (chọn)

        +) Nếu p=3k+1 \(\Rightarrow\) p+2 =(3k+3) \(⋮\)3 là hợp số (loại)

        +) Nếu p=3k+2 \(\Rightarrow\)p+4=(3k+6)\(⋮\)3 là hợp số (loại)

                            Vậy số cần tìm là 3

26 tháng 2 2017

Chỉ cần 1 cách của nhuyễn thanh tùng có thể giải quyết cả 4 câu nên 3 câu còn lại e tự làm tiếp nhé

Cau 1 Có  số vừa là bội của 3 vừa là ước của 54.Câu 2:Viết số 43 dưới dạng tổng hai số nguyên tố a,b với a<b . Khi đó  b=Câu 3:Tập hợp các số tự nhiên x là bội của 13 và 26<=x<=104  có  phần tử.Câu 4:Tập hợp các số có hai chữ số là bội của 32 là {}(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").Câu 5:Có tất cả bao nhiêu cặp số tự nhiên {x,y} thỏa mãn...
Đọc tiếp

Cau 1 Có  số vừa là bội của 3 vừa là ước của 54.

Câu 2:
Viết số 43 dưới dạng tổng hai số nguyên tố a,b với a<b . Khi đó  b=

Câu 3:
Tập hợp các số tự nhiên x là bội của 13 và 26<=x<=104  có  phần tử.

Câu 4:
Tập hợp các số có hai chữ số là bội của 32 là {}
(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").

Câu 5:
Có tất cả bao nhiêu cặp số tự nhiên {x,y} thỏa mãn {2x+y}{y-3} ?
Trả lời: Có  cặp

Câu 6:
Tổng của tất cả các số nguyên tố  có 1 chữ số là 

Câu 7:
Tìm số nguyên tố p nhỏ nhất sao cho p+2 và p+4 cũng là số nguyên tố.
Trả lời: Số nguyên tố  

Câu 8:
Tìm số nguyên tố p nhỏ nhất sao cho p+10 và p+14 cũng là số nguyên tố.
Trả lời:Số nguyên tố  

Câu 9:
Có bao nhiêu số nguyên tố có dạng a1 ?
Trả lời:  số.

Câu 10:
Cho x,y là các số nguyên tố thỏa mãn x.x+45=y.y . Tổng x+y=

 

 

2
8 tháng 11 2016

Cau 1 Có  số vừa là bội của 3 vừa là ước của 54.

6

Câu 2:
Viết số 43 dưới dạng tổng hai số nguyên tố a,b với a<b . Khi đó  b=

41

Câu 3:
Tập hợp các số tự nhiên x là bội của 13 và 26<=x<=104  có  phần tử.

7

Câu 4:
Tập hợp các số có hai chữ số là bội của 32 là {32;64;96}
(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").

Câu 5:
Có tất cả bao nhiêu cặp số tự nhiên {x,y} thỏa mãn {2x+y}{y-3} ?
Trả lời: Có 2 cặp

Câu 6:
Tổng của tất cả các số nguyên tố  có 1 chữ số là 17

Câu 7:
Tìm số nguyên tố p nhỏ nhất sao cho p+2 và p+4 cũng là số nguyên tố.
Trả lời: Số nguyên tố  1

Câu 8:
Tìm số nguyên tố p nhỏ nhất sao cho p+10 và p+14 cũng là số nguyên tố.
Trả lời:Số nguyên tố  3

Câu 9:
Có bao nhiêu số nguyên tố có dạng a1 ?
Trả lời: 5 số.

Câu 10:
Cho x,y là các số nguyên tố thỏa mãn x.x+45=y.y . Tổng x+y=9

19 tháng 11 2016

Tập hợp các số tự nhiên x sao cho 6/ (x+1) là { } (Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").

30 tháng 12 2017

a) (x+1)+(x+2)+(x+3)+........+(x+100)=5750

(x+x+...+x)+(1+2+3+...+100)=5750

(x.100)+(1+100).100:2=5750

(x.100)+5050=5750

x.100=5750-5050

x.100=700

x       =700:100

x       = 7

Vậy x = 7 

c)  trước hết cần chú ý rằng mọi số tự nhiên đều viết được dưới 1 trong 3 dạng: 3k, 3k +1 hoặc 3k +2(với k là số tự nhiên) 

+) Nếu p = 3k vì p là số nguyên tố nên k = 1 => p = 3 => p+10 = 13 là số nguyên tố; p+14 = 17 là số nguyên tố (1) 

+) Nếu p = 3k +1 => p +14 = 3k+1+14 = 3k+15 = 3(k+5) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mãn điều kiện đề bài) (2) 

+) Nếu p=3k+2 => p+10 = 3k+2+10 = 3k+12 = 3(k+4) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (3) 

Từ (1), (2), (3) suy ra p = 3 là giá trị cần tìm. 

Vậy nha còn câu b mình tạm thời chưa biết, chúc bạn học tốt

29 tháng 4 2018

ab+2a-b=3

a(b+2)-b=3

a(b+2)-b+2=3+2

(b+2)(a-1)=5

sau đó bạn tìm các nghiệm cho chúng thỏa mãn nhé(cho là hai số trên thuộc ước của 5 rồi tính)

Câu 1:Tập hợp các số tự nhiên là bội của 13 và có phần tử.Câu 2:Có số vừa là bội của 3 vừa là ước của 54.Câu 3:Tập hợp các số tự nhiên sao cho là {}(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").Câu 4:Tập hợp các số tự nhiên nhỏ hơn 120 chia hết cho 2 và 5 có số phần tử làCâu 5:Cho a là một số chẵn chia hết cho 5, b là một số chia hết cho 2.Vậy a + b khi chia cho...
Đọc tiếp

Câu 1:
Tập hợp các số tự nhiên là bội của 13 và có phần tử.

Câu 2:
Có số vừa là bội của 3 vừa là ước của 54.

Câu 3:
Tập hợp các số tự nhiên sao cho là {}
(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").

Câu 4:
Tập hợp các số tự nhiên nhỏ hơn 120 chia hết cho 2 và 5 có số phần tử là

Câu 5:
Cho a là một số chẵn chia hết cho 5, b là một số chia hết cho 2.Vậy a + b khi chia cho 2 thì có số dư là

Câu 6:
Tổng của tất cả các số nguyên tố có 1 chữ số là

Câu 7:
Có bao nhiêu hợp số có dạng ?
Trả lời: có số.

Câu 8:
Tìm số nguyên tố nhỏ nhất sao cho và cũng là số nguyên tố.
Trả lời: Số nguyên tố

Câu 9:
Cho là các số nguyên tố thỏa mãn . Tổng .

Câu 10:
Tổng hai số nguyên tố là một số nguyên tố. Vậy hiệu của hai số nguyên tố đó là .

0
14 tháng 9 2023

mình chỉ biết bài 4 thôi
Bài 4: Vì tổng bằng 1012 nên trong 3 số nguyên tố đó thì phải có 1 số nguyên tố là số chẵn. Nên số chẵn đó là 2 đồng thời là số nhỏ nhất. Vậy số 2 là số nguyên tố nhỏ nhất trong 3 số nguyên tố đó