\(\sqrt{\dfrac{y^2}{x}}\)

câu 2: 4+\(\sqrt{31}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2021

Câu 1: \(x\sqrt{\dfrac{y^2}{x}}=\sqrt{\dfrac{y^2}{x^3}}\)

21 tháng 10 2021

cho m hỏi là sao ra đc cái đó vậy ạ, bn có thể lm kĩ hơn 1 xíu đc kh

14 tháng 6 2017

1 .    \(\sqrt{2+1}\)\(\sqrt{3}\)

   ta có : \(2\)\(3\)\(\Rightarrow\)\(\sqrt{2}\)<\(\sqrt{3}\)\(\Rightarrow\)\(2\)\(\sqrt{3}\)

14 tháng 6 2017

\(\sqrt{3-1}\)\(\sqrt{2}\)

ta có : \(1\)\(2\)\(\Rightarrow\)\(\sqrt{1}\)\(\sqrt{2}\)\(\Rightarrow\)\(1\)\(\sqrt{3}-1\)

27 tháng 1 2017

CÂU 3 : ĐỀ BÀI , SUY RA :

X-1 + X-2 =3 <=> 2X = 6 <=> X =3 

19 tháng 10 2020

Chờ từ trưa không idol nào đụng thì thôi em xin vậy :))

BT1:

Ta có: \(A\cdot B=\sqrt{4+\sqrt{10+2\sqrt{5}}}\cdot\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

\(=\sqrt{16-10-2\sqrt{5}}\)

\(=\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-1\)

Từ đó thay vào: \(\left(A-B\right)^2\)

\(=A^2-2AB+B^2\)

\(=4+\sqrt{10+2\sqrt{5}}-2\left(\sqrt{5}-1\right)+4-\sqrt{10+2\sqrt{5}}\)

\(=10-2\sqrt{5}\)

\(\Rightarrow A-B=\sqrt{10-2\sqrt{5}}\)

BT2:

Đặt \(B=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

\(\Leftrightarrow B^2=4+\sqrt{7}-2\sqrt{\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}+4-\sqrt{7}\)

\(=8-2\sqrt{16-7}=8-2\cdot3=2\)

\(\Rightarrow B=\sqrt{2}\)

\(\Rightarrow A=B-\sqrt{2}=\sqrt{2}-\sqrt{2}=0\)

19 tháng 10 2020

BT3:

đk: \(\orbr{\begin{cases}x\ge2\\x< -2\end{cases}}\)

\(C=\frac{x+2+\sqrt{x^2-4}}{x+2-\sqrt{x^2-4}}+\frac{x+2-\sqrt{x^2-4}}{x+2+\sqrt{x^2-4}}\)

\(C=\frac{\left(x+2+\sqrt{x^2-4}\right)^2}{\left(x+2\right)^2-\left(x^2-4\right)}+\frac{\left(x+2-\sqrt{x^2-4}\right)^2}{\left(x+2\right)^2-\left(x^2-4\right)}\)

\(C=\frac{\left(x+2\right)^2+2\left(x+2\right)\sqrt{x^2-4}+x^2-4+\left(x+2\right)^2-2\left(x+2\right)\sqrt{x^2-4}+x^2-4}{x^2+4x+4-x^2+4}\)

\(C=\frac{2x^2+8x+8+2x^2-8}{4x+8}\)

\(C=\frac{4x^2+8x}{4x+8}=x\)

Vậy C = x

21 tháng 6 2018

\(1)\) Ta có : 

\(M=\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}\)

\(M=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}\)

\(M=\left|x+1\right|+\left|x-1\right|\)

\(M=\left|x+1\right|+\left|1-x\right|\ge\left|x+1+1-x\right|=\left|2\right|=2\)

Dấu "=" xảy ra khi và chỉ khi \(\left(x+1\right)\left(1-x\right)\ge0\)

Trường hợp 1 : 

\(\hept{\begin{cases}x+1\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le1\end{cases}\Leftrightarrow}-1\le x\le1}\)

Trường hợp 2 : 

\(\hept{\begin{cases}x+1\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-1\\x\ge1\end{cases}}}\) ( loại ) 

Vậy GTNN của \(M\) là \(2\) khi \(-1\le x\le1\)

Chúc bạn học tốt ~ 

21 tháng 6 2018

b,ta co x^2+y^2=1

=>x^2=1-y^2

    y^2=1-x^2

ta co

\(\sqrt{x^4+4\left(1-x^2\right)}\)+\(\sqrt{y^4+4\left(1-y^2\right)}\)

=\(\sqrt{\left(x^2-2\right)^2}\)+\(\sqrt{\left(y^2-2\right)^2}\)

còn lại bạn xét các trường hợp của x^2-2 và y^2-2 là ra

28 tháng 10 2016

Vậy cái điều kiện \(x\ne\sqrt{3}\)người ta cho chi bạn. Bạn nên để ý là cái điều kiện người ta cho là nhằm cho cái đó nó xác định chớ không cho tào lao đâu. x # 0 cũng là vì lý do đó nên mình chắc cái đề trong sách in sai

28 tháng 10 2016

Với điều kiện kèm theo thì mình chắc rằng cái đề phải là x - \(\sqrt{27}\) chứ không thể lad x - 27 được. Bạn xem lại đề nhé

7 tháng 9 2020

+) ĐKXĐ : \(x\ge-1\)

 \(\sqrt{x+1}+13=17\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\left(TM\right)\)

+) ĐKXĐ : \(x\ge\frac{1}{2}\)

\(\sqrt{2x-1}=x+2\)

\(\Leftrightarrow2x-1=x^2+4x+4\)

\(\Leftrightarrow2x-x^2-4x-1-4=0\)

\(\Leftrightarrow-2x-x^2-5=0\)

\(\Leftrightarrow-\left(x^2+2x+1+4\right)=0\)

\(\Leftrightarrow-\left(x+1\right)^2=4\)

Vậy phương trình vô nghiệm

+) ĐKXĐ : với mọi x

\(\sqrt{x^2-6x+9}=x+1\) 

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=x+1\)

\(\Leftrightarrow\left|x-3\right|=x+1\)

Giải nốt

7 tháng 9 2020

\(\sqrt{x+1}+13=17\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\)

\(\sqrt{2x-1}=x+2\)

\(\Leftrightarrow2x-1=x^2+4x+4\)

\(\Leftrightarrow-x^2-2x-5=0\)

\(\Leftrightarrow x^2+2x+5=0\)

có lẽ sai đề hoặc mình sai bạn kt lại phần này hộ

\(\sqrt{x^2-6x+9}=x+1\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=x+1\)

\(\Leftrightarrow x-3=x+1\)

\(\Rightarrow\)x không tồn tại

18 tháng 2 2017

mấy câu đầu + giữa = bình phương+ liên hợp

câu cuối cùng pt cho thành mũ 2

27 tháng 8 2021

\(a,\sqrt{\frac{x-2}{25}}+2\sqrt{4x-8}=2\sqrt{x-2}+11\)

\(ĐKXĐ:x\ge2\)

\(\frac{1}{5}\sqrt{x-2}+4\sqrt{x-2}-2\sqrt{x-2}=11\)

\(\frac{11}{5}\sqrt{x-2}=11\)

\(\sqrt{x-2}=5\)

\(x-2=25\)

\(x=27\left(TM\right)\)

\(b,\sqrt{x^2-2x+1}=3x-2\)

\(ĐKXĐ:x\ge\frac{3}{2}\)

\(\sqrt{\left(x-1\right)^2}=3x-2\)

\(\left|x-1\right|=3x-2\)

\(x-1=3x-2\)

\(x=\frac{1}{2}\left(KTM\right)\)vậy pt vô nghiệm

27 tháng 8 2021

b, đk  : x >= 2/3

|x - 1| = 3x - 2

=> x - 1 = 3x - 2 hoặc x - 1 = 2 - 3x

=> 2x = 1 hoặc 4x = 3

=> x = 1/2 (ktm) hoặc x = 3/4 (tm)