Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Hàm số đồng biến nếu \(\dfrac{k^2+2}{k-3}>0\) \(\Leftrightarrow k>3\)
b) Hàm số nghịch biến nếu \(\dfrac{k+\sqrt{2}}{k^2+\sqrt{3}}< 0\Leftrightarrow k< -\sqrt{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a Để hàm số y đồng biến trên R
thì k2+2/k-3 > 0 đk k khác 3
mà k2+2>0 thì k-3 > 0 suy ra k>3
b Để hàm số Y đồng biến trên R
thì k+ căn 2/ k2+ căn 3 < 0 mà x2+ căn 3 >0 suy ra k< - căn 2
![](https://rs.olm.vn/images/avt/0.png?1311)
Hàm số đồng biến trên R khi và chỉ khi
m3 - 2m2 - 5m + 6 > 0
<=> (m + 2)(m - 1)(m - 3) > 0
<=> \(\orbr{\begin{cases}-2< m< 1\\m>3\end{cases}}\)
Hàm số nghịch biến trên R khi và chỉ khi
m3 - 2m2 - 5m + 6 < 0
<=> (m + 2)(m - 1)(m - 3) < 0
<=> \(\orbr{\begin{cases}m< -2\\1< m< 3\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, y là hàm số bậc nhất khi \(2-m\ne0\Leftrightarrow m\ne2\)
b , y đồng biến khi 2 - m > 0 => m < 2
y nghịch biến khi 2 - m < 0 => m > 2
c, (d) // y=4-x khi
\(\hept{\begin{cases}2-m=4\\m-1\ne-x\end{cases}}\Leftrightarrow\hept{\begin{cases}m=-2\\m\ne-x+1\end{cases}}\Leftrightarrow m=-2\)
👍👍✔✔✔
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Hàm số y = (m – 1)x + 3 là hàm số bậc nhất đối với x khi m – 1 ≠ 0 hay m ≠ 1 (*)
Hàm số đồng biến khi m – 1 > 0 hay m > 1.
Kết hợp với điều kiện (*) ta được với m > 1 thì hàm số đồng biến.
b) Hàm số y = (5 – k)x + 1 là hàm số bậc nhất đối với x khi 5 – k ≠ 0 hay k ≠ 5 (**).
Hàm số nghịch biến khi 5 – k < 0 hay k < 5.
Kết hợp với điều kiện (**) ta được với k < 5 thì hàm số nghịch biến.
a, y= 5x - (2-x)k = 5x - 2k + k.x = (5+k)x - 2k
Vậy hàm số có hệ số a= 5+k. Khi đó:
+ Hàm số đồng biến a > 0 ⇔ 5 + k > 0 ⇔ k > -5
+ Hàm số nghịch biến a < 0 ⇔ 5 + k < 0 ⇔ k < -5.
![](https://rs.olm.vn/images/avt/0.png?1311)
a,khi m-1>=0 thi ham so dong bien tuc m>=1
b,khi 5-k<=0 thi ham so nghich bien tuc k>=5
a) Khi m - 1 \(\ge\)0 thì hàm số đồng biến tức m \(\ge\)1
b) Khi 5 - k \(\le\)0 thì hàm số nghịch biến tức k \(\ge\)5
Hàm nghịch biến trên R khi:
\(3-2k< 0\Rightarrow k>\dfrac{3}{2}\)
để hàm số nghịch biên thì\(3-2k< 0\Rightarrow2k>3\Rightarrow k>\dfrac{3}{2}\)