K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 12 2021

Hàm nghịch biến trên R khi:

\(3-2k< 0\Rightarrow k>\dfrac{3}{2}\)

12 tháng 12 2021

để hàm số nghịch biên thì\(3-2k< 0\Rightarrow2k>3\Rightarrow k>\dfrac{3}{2}\)

10 tháng 12 2020

a) Hàm số đồng biến nếu \(\dfrac{k^2+2}{k-3}>0\) \(\Leftrightarrow k>3\)

b) Hàm số nghịch biến nếu \(\dfrac{k+\sqrt{2}}{k^2+\sqrt{3}}< 0\Leftrightarrow k< -\sqrt{2}\)

9 tháng 12 2020

a Để hàm số y đồng biến trên R 

thì k2+2/k-3 > 0  đk k khác 3 

mà k2+2>0 thì k-3 > 0 suy ra k>3

b Để hàm số Y đồng biến trên R

thì k+ căn 2/ k2+ căn 3 < 0 mà x2+ căn 3 >0 suy ra k< - căn 2

4 tháng 11 2016

Hàm số đồng biến trên R khi và chỉ khi

m3 - 2m2 - 5m + 6 > 0

<=> (m + 2)(m - 1)(m - 3) > 0

<=> \(\orbr{\begin{cases}-2< m< 1\\m>3\end{cases}}\)

Hàm số nghịch biến trên R khi và chỉ khi

m3 - 2m2 - 5m + 6 < 0

<=> (m + 2)(m - 1)(m - 3) < 0

<=> \(\orbr{\begin{cases}m< -2\\1< m< 3\end{cases}}\)

4 tháng 11 2016

thanks pạn nhìu ạ 

25 tháng 1 2019

a) Hàm số y = (m – 1)x + 3 là hàm số bậc nhất đối với x khi m – 1 ≠ 0 hay m ≠ 1 (*)

Hàm số đồng biến khi m – 1 > 0 hay m > 1.

Kết hợp với điều kiện (*) ta được với m > 1 thì hàm số đồng biến.

b) Hàm số y = (5 – k)x + 1 là hàm số bậc nhất đối với x khi 5 – k ≠ 0 hay k ≠ 5 (**).

Hàm số nghịch biến khi 5 – k < 0 hay k > 5.

Kết hợp với điều kiện (**) ta được với k > 5 thì hàm số nghịch biến.

b)

Để hàm số \(y=\left(1-k^2\right)x-1\) là hàm số bậc nhất thì \(1-k^2\ne0\)

\(\Leftrightarrow k^2\ne1\)

hay \(k\notin\left\{1;-1\right\}\)

Để hàm số \(y=\left(1-k^2\right)x-1\) nghịch biến trên R thì \(1-k^2< 0\)

\(\Leftrightarrow k^2>1\)

\(\Leftrightarrow\left[{}\begin{matrix}k>1\\k< 1\end{matrix}\right.\)

Kết hợp ĐKXĐ, ta được: \(\left[{}\begin{matrix}k>1\\k< 1\end{matrix}\right.\)

Vậy: Khi \(\left[{}\begin{matrix}k>1\\k< 1\end{matrix}\right.\) thì hàm số \(\left[{}\begin{matrix}k>1\\k< 1\end{matrix}\right.\) nghịch biến trên R

9 tháng 12 2021

a) khi m khác 1/2

b)khi m >1

c) khi K<5