Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC có
\(\dfrac{BM}{AB}=\dfrac{CN}{AC}\left(BM=CN;AB=AC\right)\)
nên MN//BC(Định lí Ta lét đảo)
Xét tứ giác BMNC có MN//BC(cmt)
nên BMNC là hình thang
Hình thang BMNC có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
nên BMNC là hình thang cân
b) \(\widehat{B}=\widehat{C}=\dfrac{180^0-40^0}{2}=70^0\)
\(\Leftrightarrow\widehat{BMN}=\widehat{MNC}=180^0-70^0=110^0\)
a) ta có AB/AM = AC/AN (AB = AC và AM = AN theo giả thiết)
nên theo định lý đảo của định lý talet ta có MN // với BC
vậy BMNC là hình thang cân
b) xét tam giác ABC có góc A = 400. tam giác cân tại A nên ta có
góc A = góc B = (180-40):2 = 700
xét hình thang cân BMNC có:
góc BMN = góc CNM (vì đây là hai góc cùng kề 1 đáy của hình thang cân) = (360 - góc BMN - góc CNM): 2 = (360-70-70): 2 = 1100
a)Có: AB=AM+MB
AC=AN+NC
Mà: AB=AC(gt) ; BM=CN(gt)
=>AM=AN
=> ΔAMN cân tại A
=>\(\widehat{AMN}=\frac{180-\widehat{A}}{2}\) (1)
Xét ΔABC cân tại A(gt)
=>\(\widehat{ABC}=\frac{180-\widehat{A}}{2}\) (2)
Từ (1)(2) suy ra:
^AMN=^ABC.MÀ hai góc này ở vị trí soletrong
=>MN//BC
Lại có: ^B=^C(gt)
=>BMNC là hình thang cân
b) Có: \(\widehat{MBC}=\widehat{NCB}=\frac{180-\widehat{A}}{2}=\frac{180-40}{2}=\frac{140}{2}=70\) (vì BMNC là ht)
Có: ^MBC+^BMN=180
=>^BMN=180-^MBC=180-70=110
=>^BMN=^MNC=110
a: Xét ΔABC có
\(\dfrac{BM}{AB}=\dfrac{CN}{AC}\)
Do đó: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
a, Vì tma giác ABC cân tại A
=> AB=AC
=> AM + MN = AN + NC mà BM = NC
=> AM = AN
=> tam giác AMN cân tại A
=> góc AMN = (1800-góc A)/2
Vì tam giác ABC cân tại A => góc ABC = (1800-góc A)/2
=> góc AMN=góc ABC mà chúng là 2 góc đồng vị
=> MN // BC
=> tứ giác BMNC là hình thang
Chứng minh được tam giác BMC=tam giác CNB (c.g.c)
=> MC=BN
Vậy tứ giác BMNC là hình thang cân
b, góc MBC= góc NCB = (1800-400)/2=700
góc BMN= góc MNC = 1800-700=1100
Bài làm :
Ta có hình vẽ:
a) Xét tam giác ABC có :
\(\widehat{ABC}=\widehat{ACB}=\frac{180-\widehat{BAC}}{2}\left(1\right)\)
Xét tam giác AMN có :
\(\widehat{AMN}=\widehat{ANM}=\frac{180-\widehat{BAC}}{2} \left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\widehat{ABC}=\widehat{ACB}=\widehat{AMN}=\widehat{ANM}\)
=> Tứ giác MBNC là hình thang cân
b) Ta có :
\(\widehat{MBC}=\widehat{NCB}=\frac{\widehat{BAC}}{2}=\frac{180-40}{2}=70^o\)
Vì tứ giác MNBC là hình thang cân
\(\Rightarrow\widehat{BMC}=\widehat{CNB}=\frac{360-70.2}{2}=110^o\)
a) Chứng minh BN là tia phân giác của góc N, CN là tia phân giác của góc C nên điểm M;N là đường phân giác của hình tam giác ABC
thì BM = MN = NC.
Câu 1:
b) Ta có: \(C=25x^2-2xy+\frac{1}{25}y^2\)
\(=\left(5x\right)^2-2\cdot5x\cdot\frac{1}{5}y+\left(\frac{1}{5}y\right)^2\)
\(=\left(5x-\frac{1}{5}y\right)^2\)
Thay \(x=-\frac{1}{2}\) và y=-5 vào biểu thức \(C=\left(5x-\frac{1}{5}y\right)^2\), ta được:
\(C=\left[5\cdot\left(\frac{-1}{2}\right)-\frac{1}{5}\cdot\left(-5\right)\right]^2\)
\(=\left(-\frac{5}{2}+1\right)^2\)
\(=\left(\frac{-5}{2}+\frac{2}{2}\right)^2\)
\(=\left(-\frac{3}{2}\right)^2\)
\(=\frac{9}{4}\)
Vậy: Khi \(x=-\frac{1}{2}\) và y=-5 thì \(C=\frac{9}{4}\)
Câu 2:
a) Ta có: AM+MB=AB(M nằm giữa A và B)
AN+NC=AC(N nằm giữa A và C)
mà AB=AC(ΔABC cân tại A)
và MB=NC(gt)
nên AM=AN
Xét ΔAMN có AM=AN(cmt)
nên ΔAMN cân tại A(định nghĩa tam giác cân)
⇒\(\widehat{AMN}=\frac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
⇒\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)
mà \(\widehat{AMN}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)
Xét tứ giác BMNC có MN//BC(cmt)
nên BMNC là hình thang có hai đáy là MN và BC(Định nghĩa hình thang)
Hình thang BMNC(MN//BC) có \(\widehat{B}=\widehat{C}\)(hai góc ở đáy trong ΔABC cân tại A)
nên BMNC là hình thang cân có hai đáy là MN và BC(Định nghĩa hình thang cân)
b) Ta có: ΔABC cân tại A(gt)
⇒\(\widehat{ABC}=\widehat{ACB}=\frac{180^0-\widehat{A}}{2}\)(Số đo của các góc ở đáy trong ΔABC cân tại A)
hay \(\widehat{ABC}=\widehat{ACB}=\frac{180^0-40^0}{2}=\frac{140^0}{2}=70^0\)
Ta có: MN//BC(cmt)
⇒\(\left\{{}\begin{matrix}\widehat{B}+\widehat{BMN}=180^0\\\widehat{C}+\widehat{CNM}=180^0\end{matrix}\right.\)(Các cặp góc trong cùng phía bù nhau)
⇒\(\left\{{}\begin{matrix}\widehat{BMN}=180^0-\widehat{B}=180^0-70^0=110^0\\\widehat{CNM}=180^0-\widehat{C}=180^0-70^0=110^0\end{matrix}\right.\)