K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2021

\(1,\Leftrightarrow x=10\\ 2,=x^2-4x+4-x^2+4x=4\\ 3,=\left(x+y\right)^2-49=\left(x+y+7\right)\left(x+y-7\right)\)

26 tháng 11 2021

Câu 1 :

\(2x-20=0\)

\(2x=0+20\)

\(2x=20\)

\(2.x=20\)

\(x=20:2\)

\(x=10\)

 

 

18 tháng 10 2020

1. \(B=\left(x-2\right)\left(x+2\right)\left(x+3\right)-\left(x+1\right)^3\)

\(=\left(x^2-4\right)\left(x+3\right)-\left(x^3+3x^2+3x+1\right)\)

\(=x^3+3x^2-4x-12-x^3-3x^2-3x-1\)

\(=-7x-13\)

2. \(64-x^2-y^2+2xy=64-\left(x^2+y^2-2xy\right)\)

\(=64-\left(x-y\right)^2=\left(8+x-y\right)\left(8-x+y\right)\)

3. \(2x^3-x^2+2x-1=0\)

\(\Leftrightarrow x^2.\left(2x-1\right)+\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2+1\right)=0\)

Vì \(x^2\ge0\)\(\Rightarrow x^2+1>0\)

\(\Rightarrow2x-1=0\)\(\Rightarrow2x=1\)\(\Rightarrow x=\frac{1}{2}\)

Vậy \(x=\frac{1}{2}\)

18 tháng 10 2020

Bài 1.

B = ( x - 2 )( x + 2 )( x + 3 ) - ( x + 1 )3

= ( x2 - 4 )( x + 3 ) - ( x3 + 3x2 + 3x + 1 )

= x3 + 3x2 - 4x - 12 - x3 - 3x2 - 3x - 1

= -7x - 13

Bài 2.

64 - x2 - y2 + 2xy

= 64 - ( x2 - 2xy + y2 )

= 82 - ( x - y )2

= ( 8 -  x + y )( 8 + x - y )

Bài 3.

2x3 - x2 + 2x - 1 = 0

<=> ( 2x3 - x2 ) + ( 2x - 1 ) = 0

<=> x2( 2x - 1 ) + 1( 2x - 1 ) = 0

<=> ( 2x - 1 )( x2 + 1 ) = 0

<=> \(\orbr{\begin{cases}2x-1=0\\x^2+1=0\end{cases}}\Leftrightarrow x=\frac{1}{2}\)( vì x2 + 1 ≥ 1 > 0  ∀ x )

21 tháng 5 2017

câu 1.

P= 2(x+y)(x-y)+(x-y)^2+(x+y)^2-4y^2

P= (x+y+x-y)^2-(2y)^2

P=(2x-2y)(2x+2y)

P=4(x^2-y^2)

câu 2.

a, x^3-2x^2-4xy^2+x= x(x^2-2x+1)-4xy^2

                             =x(x-1)^2-4xy^2

                             =x(x-1-2y)(x-1+2y)

b, (x+1)(x+2)(x+3)(x+4)-24= (x^2+5x+4)(x^2+5x+6)-24

Đặt x^2+5x+4= a

Lúc đó: (x+1)(x+2)(x+3)(x+4)-24= a(a+2)-24

                                              = a^2+2a-24

                                              =a^2+2a+1-25

                                              = (a+1)^2-5^2

                                              = (a+1-5)(a+1+5)

                                              = (a-4)(a+6)

mà ta đặt x^2+5x+4=a => (x+1)(x+2)(x+3)(x+4)-24= (x^2+5x+4-4)(x^2+5x+4+6)

                                                                         = (x^2+5x)(x^2+5x+10)

câu3. (x+2)^2= 4-x^2

=> (x+2)^2-4+x^2=0

=>. (x+2)^2-(2-x)(2+x)=0

=> (x+2)(x+2-2+x)=0

=> (x+2)2x=0

=> x+2=0 hoặc 2x=0

=> x=-2 hoặc x=0

21 tháng 5 2017

1)P=2(x^2-y^2)+x^2-2xy+y^2+x^2+2xy+y^2-4y^2=2x^2-2y^2+2x^2+2y^2-4y^2=4x^2-4y^2 .                      3) <=> x^2+4x+4-4+x^2=0

<=> 2x^2+4x=0      <=>2x(x+2)=0     <=>2x=0 hay x+2=0      <=>x=0 hay x=-2

28 tháng 10 2019

a>(8x^2y+10xy6^2-6xy):2xy=4xy+5y-3

b>(3x^2-4x).(2x-6)=6x^3-26x^2+24x

3 tháng 11 2017

A) \(\left(x-3\right)^2-\left(x+2\right)^2\)

\(=\left(x-3-x-2\right)\left(x-3+x+2\right)\)

\(=-5.\left(2x-1\right)\)

B) \(\left(4x^2+2xy+y^2\right)\left(2x-y\right)-\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)

\(=\left(2x\right)^3-y^3-\left[\left(2x\right)^3+y^3\right]\)

\(=8x^3-y^3-8x^3-y^3\)

\(=-2y^3\)

C) \(x^2+6x+8\)

\(=x^2+6x+9-1\)

\(=\left(x+3\right)^2-1\)

\(=\left(x+3-1\right)\left(x+3+1\right)\)

\(=\left(x+2\right)\left(x+4\right)\)

bài 3 A) \(x^2-16=0\)

\(\left(x-4\right)\left(x+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

vậy \(\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

B) \(x^4-2x^3+10x^2-20x=0\)

\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\left(x^3+10x\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^3+10x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x\left(x^2+10\right)=0\\x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

vậy \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

3 tháng 8 2021

x=0

x=2

31 tháng 10 2020

Bài 1.

Ta có : B = ( x + 2 )2 + ( x - 2 )2 - 2( x + 2 )( x - 2 )

= [ ( x + 2 ) - ( x - 2 ) ]2

= ( x + 2 - x + 2 )2

= 42 = 16

=> B không phụ thuộc vào x

Vậy với x = -4 thì B vẫn bằng 16

Bài 2.

4x2 - 4x + 1 = ( 2x )2 - 2.2x.1 + 12 = ( 2x - 1 )2

Bài 3.

Ta có : \(A=\frac{3}{2}x^2+2x+3\)

\(=\frac{3}{2}\left(x^2+\frac{4}{3}x+\frac{4}{9}\right)+\frac{7}{3}\)

\(=\frac{3}{2}\left(x+\frac{2}{3}\right)^2+\frac{7}{3}\ge\frac{7}{3}\forall x\)

Dấu "=" xảy ra khi x = -2/3

=> MinA = 7/3 <=> x = -2/3

NV
26 tháng 3 2023

1.

\(A=\dfrac{2x-9}{\left(x-2\right)\left(x-3\right)}-\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-2\right)\left(x-3\right)}+\dfrac{\left(2x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{2x-9-\left(x^2-9\right)+\left(2x^2-8\right)}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}=\dfrac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{x+4}{x-3}\)

b.

\(A=2\Rightarrow\dfrac{x+4}{x-3}=2\Rightarrow x+4=2\left(x-3\right)\)

\(\Rightarrow x=10\) (thỏa mãn)

2.

\(x^4+2x^2y+y^2-9=\left(x^2+y\right)^2-3^2=\left(x^2+y-3\right)\left(x^2+y+3\right)\)

26 tháng 3 2023

Em cảm ơn ạ