\(\frac{3}{2x^2+6}\)

Câu 2: Tìm gi...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2019

Bài 2

Ta có :

\(3y^2-12=0\)

\(3y^2=0+12\)

\(3y^2=12\)

\(y^2=12:3\)

\(y^2=4\)

\(\Rightarrow y=\pm2\)

b) \(\left|x+1\right|+2=0\)

\(\left|x+1\right|=0+2\)

\(\Rightarrow\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)

19 tháng 2 2019

\(N=\frac{3}{2x^2+6}\)

Ta có: \(x^2\ge0\Rightarrow2x^2+6\ge6\)

\(\Rightarrow N_{Max}=\frac{3}{2x^2+6}=\frac{3}{6}=1,5\)

\(\Leftrightarrow2x^2+6=6\Leftrightarrow x=0\)

5 tháng 8 2018

a)\(A=12-\left|x-3\right|-\left|y+7\right|\)

\(-\left|x-3\right|\le0;-\left|y+7\right|\le0\)

\(\Rightarrow A\le12-0-0=12\)

Vậy Max A = 12 <=> x = 3 ; y = -7

b)\(B=-\left(x-2018\right)^6-1\)

\(-\left(x-2018\right)^6\le0\)

\(B\le0-1=-1\)

Vậy Max B = -1 <=> x = 2018

5 tháng 8 2018

a)  \(A=12-\left|x-3\right|-\left|y+7\right|\)

Nhận thấy: \(\left|x-3\right|\ge0;\)\(\left|y+7\right|\ge0\)

suy ra:  \(A=12-\left|x-3\right|-\left|y+7\right|\le12\)

Vậy MIN A = 12

Dấu "=" xảy ra <=> \(x=3;y=-7\)

b) \(B=-\left(x-2018\right)^6-1\)

Nhận thấy:  \(\left(x-2018\right)^6\ge0\)

suy ra:  \(B=-\left(x-2018\right)^2-1\le-1\)

Vậy MIN B = -1

Dấu "=" xảy ra  <=>   \(x=2018\)

c) \(C=\frac{20}{7}-\left|x+8\right|-\left(3y+7\right)^{2016}\)

Nhận thấy:  \(\left|x+8\right|\ge0\)    \(\left(3y+7\right)^{2016}\ge0\)

suy ra:  \(C=\frac{20}{7}-\left|x+8\right|-\left(3y+7\right)^{2016}\le\frac{20}{7}\)

Vậy MIN  C = 20/7

Dấu "=" xảy ra <=>  \(x=-8;y=-\frac{7}{3}\)

1 tháng 11 2018

1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)

\(2^x.2^2.3^x.3.5^x=10800\)

\(\Rightarrow\left(2.3.5\right)^x.12=10800\)

\(\Rightarrow30^x=\frac{10800}{12}=900\)

\(\Rightarrow30^x=30^2\)

\(\Rightarrow x=2\)

b,\(3^{x+2}-3^x=24\)

\(\Rightarrow3^x\left(3^2-1\right)=24\)

\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)

2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Dấu bằng xảy ra khi \(ab\ge0\)

Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)

 \(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)

Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)

Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)

d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)

Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)

Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)

\(\Rightarrow B\le1\)

Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)

\(\Rightarrow x\le2017\)

Vậy \(Max_B=1\) khi \(x\le2017\)

1 tháng 11 2018

để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)

suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)

Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3

\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))

Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!

trả lời giúp mk với 

7 tháng 8 2016

chịu , hổng bt lun ak

6 tháng 10 2019

bài 1 :

a) vì x + 1,5 luôn lớn hơn hoặc bằng 0 mà để x+1,5 đạt giá trị nhỏ nhất => x + 1,5 = 0=> x=-1,5

b) vì x- 2 luôn lớn hơn hoặc bằng 0 mà để x-2 - 9,10 đạt gtri nhỏ nhất => x- 2 = 0=> x=2

6 tháng 10 2019

Câu 1 :                                                      Bài giải

a, \(\text{ }\text{Do }\left|x+1,5\right|\ge0\) Dấu " = " xảy ra khi \(x+1,5=0\text{ }\Rightarrow\text{ }x=-1,5\)

\(\Rightarrow\text{ }Min\text{ }\left|x+1,5\right|=0\text{ khi }x=-1,5\)

b, \(\left|x-2\right|-9,10\) đạt GTNNN khi \(\left|x-2\right|\) đạt GTNN

\(\left|x-2\right|\ge0\)Dấu " = " xảy ra khi \(x-2=0\) \(\Rightarrow\text{ }x=2\)

\(\Rightarrow\text{ }\left|x-2\right|-9,10\ge-9,10\)

\(\text{Vậy }Min\text{ }\left|x-2\right|-9,10=-9,10\text{ khi }x=2\)

Câu 2 :                                         Bài giải

a, Do  \(-\left|2x-1\right|\le0\) Dấu " = " xảy ra khi \(-\left|2x-1\right|=0\text{ }\Rightarrow\text{ }2x-1=0\text{ }\Rightarrow\text{ }x=\frac{1}{2}\)

Vậy \(Max\text{ }-\left|2x-1\right|=0\text{ khi }x=\frac{1}{2}\)

b, Do  \(4-\left|5x+3\right|\le4\text{ }\)

Dấu " = " xảy ra khi \(4-\left|5x+3\right|=4\text{ }\Rightarrow\text{ }\left|5x+3\right|=0\text{ }\Rightarrow\text{ }5x+3=0\text{ }\Rightarrow\text{ }x=-\frac{3}{5}\)

\(\text{Vậy }Max\text{ }4-\left|5x+3\right|=4\text{ khi }x=-\frac{3}{5}\)

c, \(\frac{1}{8}-\left|x+3\right|\le\frac{1}{8}\) Dấu " = " xảy ra khi \(\frac{1}{8}-\left|x+3\right|=\frac{1}{8}\text{ }\Rightarrow\text{ }\left|x+3\right|=0\text{ }\Rightarrow\text{ }x+3=0\text{ }\Rightarrow\text{ }x=-3\)

\(\text{Vậy }Max\text{ }\frac{1}{8}-\left|x+3\right|=\frac{1}{8}\text{ khi }x=-3\)

23 tháng 9 2016

ta có \(\frac{1+5y}{5x}\)=\(\frac{1+7y}{4x}\)

=>      4x(1+5y)=5x(1+7y)

=>      4x+20xy=5x+35xy

=>      4x-5x    =35xy-20xy

=>      -x          =15xy

=>      -1          =15y

=>      y           =\(\frac{-1}{15}\)

có y roi thi có thể dễ dàng tìm được x=-2