Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(=\dfrac{15-32}{40}\cdot10+\dfrac{1}{4}\)
\(=\dfrac{-17}{4}+\dfrac{1}{4}=-\dfrac{16}{4}=-4\)
b: \(=\left(\dfrac{9}{6}-\dfrac{5}{6}\right)^2+\dfrac{5}{2}+\dfrac{2}{3}\)
\(=\dfrac{4}{9}+\dfrac{5}{2}+\dfrac{2}{3}\)
\(=\dfrac{8}{18}+\dfrac{45}{18}+\dfrac{12}{18}=\dfrac{65}{18}\)
Bài 1:
Giải:
Ta có: \(\dfrac{4x}{6y}=\dfrac{2x+8}{3y+11}\)
\(\Rightarrow\dfrac{2x}{3y}=\dfrac{2x+8}{3y+11}\)
\(\Rightarrow\left(3y+11\right)2x=\left(2x+8\right)3y\)
\(\Rightarrow6xy+22x=6xy+24y\)
\(\Rightarrow22x=24y\)
\(\Rightarrow\dfrac{x}{y}=\dfrac{24}{22}\)
\(\Rightarrow\dfrac{x}{y}=\dfrac{12}{11}\)
Vậy \(\dfrac{x}{y}=\dfrac{12}{11}.\)
Câu 4:
Giải:
Gọi số h/s lớp 7A, 7B lần lượt là a,b (a,b \(\in N\)*)
Theo bài ra ta có: \(a+b=65\) và \(\dfrac{a}{6}=\dfrac{b}{7}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{6}=\dfrac{b}{7}=\dfrac{a+b}{6+7}=\dfrac{65}{13}=5\)
Khi đó \(\left[{}\begin{matrix}\dfrac{a}{6}=5\\\dfrac{b}{7}=5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a=30\\b=35\end{matrix}\right.\)
Vậy số h/s lớp \(\left[{}\begin{matrix}7A:30\\7B:35\end{matrix}\right.\).
1.
a.
\(\left(\dfrac{-4}{5}+\dfrac{2}{3}\right)\cdot\dfrac{7}{11}+\left(\dfrac{-1}{5}+\dfrac{1}{3}\right)\cdot\dfrac{7}{11}\\ =\dfrac{7}{11}\cdot\left(\dfrac{-4}{5}+\dfrac{2}{3}+\dfrac{-1}{5}+\dfrac{1}{3}\right) \\ =\dfrac{7}{11}\cdot\left[\left(\dfrac{-4}{5}+\dfrac{-1}{5}\right)+\left(\dfrac{1}{3}+\dfrac{2}{3}\right)\right]\\ =\dfrac{7}{11}\cdot\left[\left(-1\right)+1\right]\\ =\dfrac{7}{11}\cdot0\\ =0\)
b.
\(\left(-3^2\right)\cdot\left(\dfrac{3}{4}-0,25\right)-\left|-2\right|\\ =\left(-9\right)\cdot0,5-2\\ =-4,5-2\\ =-6,5\)
2.
\(y=f\left(x\right)=\left(m+1\right)x\\ \Rightarrow4=f\left(2\right)=\left(m+1\right)\cdot2\\ \Rightarrow m+1=2\\ \Leftrightarrow m=1\)
Tự
3.
a.
\(\left|x-\dfrac{2}{5}\right|=\dfrac{3}{4}\\ \Rightarrow\left[{}\begin{matrix}x-\dfrac{2}{5}=\dfrac{3}{4}\\x-\dfrac{2}{5}=\dfrac{-3}{4}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{23}{20}\\x=\dfrac{-7}{20}\end{matrix}\right.\)
b.
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2y}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2y}{6}=\dfrac{x+2y-z}{5+6-4}=\dfrac{14}{7}=2\\ \Rightarrow\left\{{}\begin{matrix}x=10\\y=6\\z=8\end{matrix}\right.\)
bài 4
B A C D M E F a)xét tam giác ABM và tam giác DCM có
BM=CM( là trung điểm của BC)
AM=DM( gt)
\(\widehat{AMB}\)=\(\widehat{DMC}\)(đối đỉnh)
do đó : tam giác ABM= tam giác DCM(c.g.c)
b)do tam giác ABM= tam giác DCM nên \(\widehat{ABM}\)= \(\widehat{DCM}\)
Mà 2 góc này ở vị trí so le trong nên AB song song CD
c) xét tam giác BME và tam giác CMF có
BM=CM ( M là trung điểm của BC)
\(\widehat{BME}\)=\(\widehat{DMF}\)( đối đỉnh)
\(\widehat{BEM}\)=\(\widehat{DFM}\)=90 độ
do đó tam giác BME= tam giác DFM( cạnh huyền -góc nhọn)
=> ME=MF
mà M,E,F thẳng hàng (E thuộc AM, F thuộc DM hay F thuộc AM)
=> M là trung điểm của EF
Câu 2 :
\(x-y=7\)
\(\Rightarrow x=7+y\)
*)
\(B=\dfrac{3\left(7+y\right)-7}{2\left(7+y\right)+y}-\dfrac{3y+7}{2y+7+y}\)
\(=\dfrac{21+3y-7}{14+3y}-\dfrac{3y+7}{3y+7}\)
\(=\dfrac{14y+3y}{14y+3y}-1\)
\(=1-1\)
\(=0\)
Vậy B = 0
2/ Ta có :
\(B=\dfrac{3x-7}{2x+y}-\dfrac{3y+7}{2y+x}\)
\(=\dfrac{3x-\left(x-y\right)}{2x+y}-\dfrac{3y+\left(x-y\right)}{2y+x}\)
\(=\dfrac{3x-x+y}{2y+x}-\dfrac{3y+x-y}{2y+x}\)
\(=\dfrac{2x+y}{2x+y}-\dfrac{2y+x}{2y+x}\)
\(=1-1=0\)
1)\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2017}{2018}\)
\(B=\dfrac{1}{2018}\)
2)a)\(x^2-2x-15=0\)
\(\Leftrightarrow x^2-2x+1-16=0\)
\(\Leftrightarrow\left(x-1\right)^2-16=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
3)\(\dfrac{a}{b}=\dfrac{d}{c}\)
\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{d^2}{c^2}=\dfrac{a}{b}\cdot\dfrac{d}{c}=\dfrac{ad}{bc}\)
Lại có:\(\dfrac{a^2}{b^2}=\dfrac{d^2}{c^2}=\dfrac{a^2+d^2}{b^2+c^2}\)
\(\Rightarrow\dfrac{a^2+d^2}{b^2+c^2}=\dfrac{ad}{bc}\)
4)Ta có:\(g\left(x\right)=-x^{101}+x^{100}-x^{99}+...+x^2-x+1\)
\(g\left(x\right)=-x^{101}+\left(x^{100}-x^{99}+...+x^2-x+1\right)\)
\(g\left(x\right)=-x^{101}+f\left(x\right)\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=f\left(x\right)+x^{101}-f\left(x\right)=x^{101}\)
Tại x=0 thì f(x)-g(x)=0
Tại x=1 thì f(x)-g(x)=1
Câu 1: tự lm, dễ tek k lm đc thì mất gốc lun đó
Câu 2: link: Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Câu 3: Câu hỏi của phuc le - Toán lớp 7 | Học trực tuyến
Câu 4: Goij 3 đơn vị đó lần lượt là a, b, c (a, b, c \(\in N\)*)
Theo đề ta có: \(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}\) và \(a+b+c=560\)
Áp dung t/c của dãy tỉ số = nhau ta có:
\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c}{2+5+7}=\dfrac{560}{14}=40\)
\(\Rightarrow\left[{}\begin{matrix}a=40\cdot2=80\\b=40\cdot5=200\\c=40\cdot7=280\end{matrix}\right.\)
Vậy 3 đơn vị được chia lại lần lượt là: 80 triệu ; 200 triệu ; 280 triệu
Câu 5: + 6: cứ thay x, y vào mà lm, phần đồ thị hs dễ bn ạ!
4/ \(\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{y}{20}\\\dfrac{y}{20}=\dfrac{z}{24}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}=k\) (đặt k)
Suy ra \(x=15k;y=20k;z=24k\)
Thay vào,ta có:
\(M=\dfrac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)
1)\(\dfrac{x+1}{-12}=\dfrac{-3}{x+1}\)
\(\Rightarrow\left(x+1\right)^2=36\)
\(\Rightarrow\left[{}\begin{matrix}x+1=6\\x+1=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-7\end{matrix}\right.\)
Vậy....
b)\(\left(\dfrac{1}{2}-2^2:\dfrac{4}{3}\right).\dfrac{6}{5}-7\)
\(=\left(\dfrac{1}{2}-4.\dfrac{3}{4}\right).\dfrac{6}{5}-7\)
\(=\left(\dfrac{1}{2}-3\right).\dfrac{6}{5}-7\)
\(=\dfrac{-5}{2}.\dfrac{6}{5}-7\)
\(=-3-7\)
\(=-10\)
Câu 1:
1/ Tìm x:(mk nghĩ là z)
\(\dfrac{x+1}{-12}=\dfrac{-3}{x+1}\Rightarrow\left(x+1\right)^2=\left(-3\right).\left(-12\right)=36\)
\(\Rightarrow x+1=6;x+1=-6\)
+) \(x+1=6\Rightarrow x=5\)
+) \(x+1=-6\Rightarrow x=-7\)
2/Tính:
\(\left(\dfrac{1}{2}-2^2:\dfrac{4}{3}\right).\dfrac{6}{5}-7=\left(\dfrac{1}{2}-\dfrac{4.3}{4}\right).\dfrac{6}{5}-7\)
\(=\left(\dfrac{1}{2}-3\right).\dfrac{6}{5}-7=\left(\dfrac{1}{2}.\dfrac{6}{5}\right)-\left(3.\dfrac{6}{5}\right)-7\)
\(=0,6-3,6-7=-10\)