Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x-7\right)^{2009}=\left(3x-7\right)^{2007}\)
\(\Leftrightarrow\left(3x-7\right)^{2009}-\left(3x-7\right)^{2007}=0\)
\(\left(3x-7\right)^{2007}.\left[\left(3x-7\right)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(3x-7\right)^{2007}=0\\\left(3x-7\right)^2=1\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{3}\\\left(3x-7\right)=\pm1\end{cases}}}\)
=> \(x=\frac{7}{3},x=2,x=\frac{8}{3}\)
Vậy ...
2/\(\frac{5^{102}.9^{1009}}{3^{2018}.25^{50}}=\frac{5^{100+2}.3^{2.1009}}{3^{2018}.5^{2.50}}=\frac{5^{100}.5^2.3^{2018}}{3^{2018}.5^{100}}=5^2=25\)
Câu 1
4 p/s cộng thêm 1,p/s cuối trừ 4 rồi nhóm vs nhau
d/s la x= - 329
Câu 2
NHân vs 7 thành 7S rồi rút gọn là đc
Câu 1 :
a) \(\Leftrightarrow\left(\frac{x+2}{327}+1\right)+\left(\frac{x+3}{326}+1\right)+\left(\frac{x+4}{325}+1\right)+\left(\frac{x+5}{324}+1\right)+\left(\frac{x+349}{5}-4\right)=0\)
\(\Leftrightarrow\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)
\(\Rightarrow\left(x+329\right).\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)
Dễ thấy \(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}\ne0\) \(\Rightarrow x+329=0\Rightarrow x=-329\)
1. A = 75(42004 + 42003 +...+ 42 + 4 + 1) + 25
A = 25 . [3 . (42004 + 42003 +...+ 42 + 4 + 1) + 1]
A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 42 + 3 . 4 + 3 + 1)
A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 42 + 3 . 4 + 4)
A = 25 . 4 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1)
A =100 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1) \(⋮\) 100
Tìm số tự nhiên x: \(2^{x-1}+5.2^{x-2}=224\Leftrightarrow2.2^{x-2}+5.2^{x-2}=224\)
\(\Leftrightarrow2^{x-2}.\left(5+2\right)=224\Leftrightarrow2^{x-2}.7=224\)
\(\Rightarrow2^{x-2}=32\Leftrightarrow2^{x-2}=2^5\)\(\Rightarrow x-2=5\Leftrightarrow x=7\)
Vậy x=7
Tìm x biết: \(\frac{3}{7}=\frac{2x+1}{3x+5}\)
\(\Rightarrow3\left(3x+5\right)=7\left(2x+1\right)\Leftrightarrow9x+15=14x+7\)
\(\Leftrightarrow14x+7-\left(9x+15\right)=0\Rightarrow5x+\left(-8\right)=0\)
\(\Leftrightarrow5x=8\Rightarrow x=\frac{8}{5}\)
Vậy x=8/5
c) 3x2 - 10x + 7 \(\ge\)0
<=> 3x2 - 3x - 7x + 7 \(\ge\)0
<=> 3x(x - 1) - 7(x-1) \(\ge\)0
<=> (x-1)(3x - 7) \(\ge\)0
<=> x - 1 \(\ge\) 0 hoặc 3x - 7 \(\ge\)0
<=> x \(\ge\) 1 hoặc x \(\ge\)7/3
Vậy: ......
d) 4x2 + 9x + 5 \(\le\)0
<=>4x2 + 4x + 5x + 5 \(\le\)0
<=>4x(x + 1) + 5(x + 1) \(\le\)0
<=>(x + 1)(4x + 5) \(\le\)0
<=>x + 1 \(\le\)0 hoặc 4x + 5 \(\le\)0
<=>x \(\le\)-1 hoặc x \(\le\)-5/4
a, 4x2 - 9 = 0 => (2x)2 = 9 => 2x = 3 hoặc 2x = -3 => x = 3/2 hoặc x = -3/2
b, 2x2 + 0,36 = 1 => 2x2 = 0,64 => x2 = 0,32 = 8/25 => \(\orbr{\begin{cases}x=\sqrt{\frac{8}{25}}\\x=-\sqrt{\frac{8}{25}}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{2\sqrt{2}}{5}\\x=\frac{-2\sqrt{2}}{5}\end{cases}}\)
c, \(\frac{5}{12}.\sqrt{x}-\frac{1}{6}=\frac{1}{3}\)
\(\Rightarrow\frac{5}{12}.\sqrt{x}=\frac{1}{3}+\frac{1}{6}=\frac{1}{2}\)
\(\Rightarrow\sqrt{x}=\frac{1}{2}\div\frac{5}{12}\)
\(\Rightarrow\sqrt{x}=\frac{6}{5}\)
\(\Rightarrow x=\left(\frac{6}{5}\right)^2=\frac{36}{25}\)
d, 3x2 + 7 = -4 => 3x2 = -4 - 7 => 3x2 = -11 => x2 = -11/3 (vô lý) => x ∈ Ø
a,\(\dfrac{2}{7}x-\dfrac{1}{2}=\dfrac{3}{4}:\sqrt{\dfrac{49}{64}}\)
\(\Leftrightarrow\dfrac{2}{7}x-\dfrac{1}{2}=\dfrac{6}{7}\)
\(\Leftrightarrow\dfrac{2}{7}x=\dfrac{19}{14}\)
\(\Leftrightarrow x=\dfrac{19}{4}\)
Với mọi \(x\in R\)
\(\left|x+2016\right|+\left|x+2017\right|+\left|x+2018\right|\ge0\Leftrightarrow6x\ge0\Leftrightarrow x\ge0\)
với \(x\ge0\) ta được: \(\left\{{}\begin{matrix}\left|x+2016\right|=x+2016\\\left|x+2017\right|=x+2017\\\left|x+2018\right|=x+2018\end{matrix}\right.\)
\(pt\Leftrightarrow3x+6051=6x\Leftrightarrow3x=6051\Leftrightarrow x=2017\)
Câu 1 : (Bạn thông cảm hơi mờ chút )
\(=-301.\left[1+\left(-7\right)^4+\left(-7\right)^7+...+\left(-7\right)^{2005}\right]\)
\(=43.\left(-7\right).\left[1+\left(-7\right)^4+\left(-7\right)^7+...+\left(-7\right)^{2005}\right]\) chia hết cho 43
Câu 3 :
*Điều kiện đủ :
Nếu m và n chia hết cho 3 thì m2 ;n2 và mn chia hết cho 3 do đó m2 + mn + n2 chia hết cho 9
*Điều kiện cần :
Ta có :\(m^2+mn+n^2=\left(m-n\right)^2+3mn\) (*)
Nếu m2 + mn + n2 chia hết cho 9 thì từ (*) ta suy ra (m - n)2 chia hết cho 3 <=> (m - n) chia hết cho 3 (1)
Mà (m - n)2 chia hết cho 9 và 3mn chia hết cho 9 => mn chia hết cho 3 => m hoặc n chia hết cho 3 (2)
Từ (1) và (2) => cả 2 số m,n đều chia hết cho 3
(3x - 7)2007 = (3x - 7)2005
=> (3x - 7)2007 - (3x - 7)2005 = 0
=> (3x - 7)2005 [(3x - 7)2 - 1] = 0
=> (3x - 7)2005 = 0 hoặc (3x - 7)2 - 1 = 0
+) (3x - 7)2005 = 0
=> 3x - 7 = 0
=> 3x = 7
=> x = 7/3
+) (3x - 7)2 - 1 = 0
=> (3x - 7)2 = 1
=> 3x - 7 = 1 => 3x = 8 => x = 8/3
3x - 7 = -1 => 3x = 6 => x = 2
Vậy: x \(\in\){-7/3;8/3;2
3x-7=1=>x=2\(\frac{2}{3}\)
3x-7=0=>x=2\(\frac{1}{3}\)