Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giải
So sánh từng số hạng của A với B, ta thấy:
\(\dfrac{19}{41}< \dfrac{21}{41};\dfrac{23}{53}< \dfrac{23}{49}\) và \(\dfrac{29}{61}< \dfrac{33}{65}\) (vì 29.65 < 33.61)
\(\Rightarrow\dfrac{19}{41}+\dfrac{23}{53}+\dfrac{29}{61}< \dfrac{21}{41}+\dfrac{23}{49}+\dfrac{33}{65}\)
\(\Rightarrow A< B\)
Vậy A < B
b) Giải
Ta có: \(C=\dfrac{19^{20}+5}{19^{20}-8}=\dfrac{19^{20}-8+13}{19^{20}-8}=1+\dfrac{13}{19^{20}-8}\)
\(D=\dfrac{19^{21}+6}{19^{21}-7}=\dfrac{19^{21}-7+13}{19^{21}-7}=1+\dfrac{13}{19^{21}-7}\)
Vì \(19^{20}-8< 19^{21}-7\) và \(13>0\)
\(\Rightarrow\dfrac{13}{19^{20}-8}< \dfrac{13}{19^{21}-7}\)
\(\Rightarrow1+\dfrac{13}{19^{20}-8}< 1+\dfrac{13}{19^{21}-7}\)
\(\Rightarrow\) \(C< D\)
Vậy C < D.
Ta có :
\(\dfrac{1}{11}>\dfrac{1}{20}\\ \dfrac{1}{12}>\dfrac{1}{20}\\ ..........\\ \dfrac{1}{20}=\dfrac{1}{20}\)
\(\Rightarrow\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{20}>\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}\\ \Rightarrow S>\dfrac{10}{20}\\ \Rightarrow S>\dfrac{1}{2}\)
a)
\(3\dfrac{14}{19}+\dfrac{13}{17}+\dfrac{35}{43}+6\dfrac{5}{19}+\dfrac{8}{43}\\ =\left(3\dfrac{14}{19}+6\dfrac{5}{19}\right)+\left(\dfrac{35}{43}+\dfrac{8}{43}\right)+\dfrac{13}{17}\\ =10+1+\dfrac{13}{17}\\ =11\dfrac{13}{17}\)
b)
\(\dfrac{-5}{7}\cdot\dfrac{2}{11}+\dfrac{-5}{7}\cdot\dfrac{9}{11}+1\dfrac{5}{7}\\ =\dfrac{-5}{7}\cdot\left(\dfrac{2}{11}+\dfrac{9}{11}\right)+1\dfrac{5}{7}\\ =\dfrac{-5}{7}\cdot1+1\dfrac{5}{7}\\ =\dfrac{-5}{7}+1\dfrac{5}{7}\\ =1\)
a) \(3\dfrac{14}{19}+\dfrac{13}{17}+\dfrac{35}{43}+6\dfrac{5}{19}+\dfrac{8}{43}\)
\(=\left(3\dfrac{14}{19}+6\dfrac{5}{19}\right)+\left(\dfrac{35}{43}+\dfrac{8}{43}\right)+\dfrac{13}{17}\)
\(=\left[\left(3+6\right)+\left(\dfrac{14}{19}+\dfrac{5}{19}\right)\right]+1+\dfrac{13}{17}\)
\(=\left[9+1\right]+1+\dfrac{13}{17}\)
\(=10+1+\dfrac{13}{17}\)
\(=11+\dfrac{13}{17}\)
\(=\dfrac{187}{17}+\dfrac{13}{17}\)
\(=\dfrac{200}{17}\)
b) \(\dfrac{-5}{7}.\dfrac{2}{11}+\dfrac{-5}{7}.\dfrac{9}{11}+1\dfrac{5}{7}\)
\(=\dfrac{-5}{7}.\left(\dfrac{2}{11}+\dfrac{9}{11}\right)+\dfrac{12}{7}\)
\(=\dfrac{-5}{7}.1+\dfrac{12}{7}\)
\(=\dfrac{-5}{7}+\dfrac{12}{7}\)
\(=\dfrac{7}{7}\)
\(=1\)
c) \(11\dfrac{3}{13}-\left(2\dfrac{4}{7}+5\dfrac{3}{13}\right)\)
= \(11\dfrac{3}{13}-2\dfrac{4}{7}-5\dfrac{3}{13}\)
\(=\left(11\dfrac{3}{13}-5\dfrac{3}{13}\right)-2\dfrac{4}{7}\)
\(=\left[\left(11-5\right)+\left(\dfrac{3}{13}-\dfrac{3}{13}\right)\right]-\dfrac{18}{7}\)
\(=\left[6+0\right]-\dfrac{18}{7}\)
\(=6-\dfrac{18}{7}\)
\(=\dfrac{42}{7}-\dfrac{18}{7}\)
\(=\dfrac{24}{7}\)
d) \(\dfrac{2}{7}.5\dfrac{1}{4}-\dfrac{2}{7}.3\dfrac{1}{4}\)
\(=\dfrac{2}{7}.\left(5\dfrac{1}{4}-3\dfrac{1}{4}\right)\)
\(=\dfrac{2}{7}.\left[\left(5-3\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)\right]\)
\(=\dfrac{2}{7}.\left[2+0\right]\)
\(=\dfrac{2}{7}.2\)
= \(\dfrac{4}{7}\)
Dấu " / " là phân số nhé
a) 5/-4 . 16/25 + -5/4 . 9/25
= -5/4 . 16/25 + -5/4 . 9/25
= -5/4 . ( 16/25 + 9/25 )
= -5/4 . 1
= -5/4
b) 4 11/23 - 9/14 + 2 12/23 - 5/4
= 103/23 - 9/14 + 58/23 - 5/4
= 103/23 + 58/23 - 9/14 - 5/4
= 7 - 9/14 - 5/4
= 143/28
c) 2 13/27 - 7/15 + 3 14/27 - 8/15
= 67/27 - 7/15 + 95/27 - 8/15
= 67/27 + 95/27 - 7/15 - 8/15
= 6 - 7/15 - 8/15
= 5
a , \(\left(\dfrac{-2}{3}+1\dfrac{1}{4}-\dfrac{1}{6}\right):\dfrac{-24}{10}\)
=\(\left(\dfrac{-2}{3}+\dfrac{5}{4}-\dfrac{1}{6}\right):\dfrac{-12}{5}\)
=\(\left(\dfrac{-8}{12}+\dfrac{15}{12}-\dfrac{2}{12}\right)\cdot\dfrac{-5}{12}\)
=\(\dfrac{5}{12}\cdot\dfrac{-5}{12}=\dfrac{-25}{144}\)
b , \(\dfrac{13}{15}\cdot0,25\cdot3+\left(\dfrac{8}{15}-1\dfrac{19}{60}\right)1\dfrac{23}{24}\)
=\(\dfrac{13}{15}\cdot\dfrac{1}{4}\cdot3+\left(\dfrac{8}{15}-\dfrac{79}{60}\right)\cdot\dfrac{57}{24}\)
=\(\dfrac{13}{20}-\dfrac{47}{60}\cdot\dfrac{57}{24}\)
=\(\dfrac{13}{20}-\dfrac{893}{480}=\dfrac{312}{480}-\dfrac{893}{480}=\dfrac{-581}{480}\)
c , \(\left(\dfrac{12}{32}+\dfrac{5}{-20}-\dfrac{10}{24}\right):\dfrac{2}{3}\)
=\(\left(\dfrac{180}{480}-\dfrac{120}{480}-\dfrac{200}{480}\right)\cdot\dfrac{3}{2}\)
= \(\dfrac{-7}{24}\cdot\dfrac{3}{2}=\dfrac{-7}{16}\)
d , \(4\dfrac{1}{2}:\left(2,5-3\dfrac{3}{4}\right)+\left(-\dfrac{1}{2}\right)\)
=\(\dfrac{9}{2}:\left(\dfrac{5}{2}-\dfrac{15}{4}\right)-\dfrac{1}{2}\)
=\(\dfrac{9}{2}:\dfrac{-5}{4}-\dfrac{1}{2}=\dfrac{9}{2}\cdot\dfrac{-4}{5}-\dfrac{1}{2}=\dfrac{-18}{5}-\dfrac{1}{2}=\dfrac{-41}{10}\)
e , \(\dfrac{-5}{2}:\left(\dfrac{3}{4}-\dfrac{1}{2}\right)=\dfrac{-5}{2}\left(\dfrac{3}{4}-\dfrac{2}{4}\right)\)
=\(\dfrac{-5}{2}:\dfrac{1}{4}=\dfrac{-5}{2}\cdot4=-10\)
2) Tinh nhanh:
a) \(\dfrac{5}{23}\) . \(\dfrac{17}{26}\) + \(\dfrac{5}{23}\) . \(\dfrac{10}{26}\) - \(\dfrac{5}{23}\)
= \(\dfrac{5}{23}\) . \(\left(\dfrac{17}{26}+\dfrac{10}{26}-1\right)\)
= \(\dfrac{5}{23}\) . \(\left(\dfrac{27}{26}-1\right)\) = \(\dfrac{5}{23}\) . \(\dfrac{1}{26}\)
= \(\dfrac{5}{598}\)
b) \(\dfrac{1}{7}.\dfrac{5}{9}+\dfrac{5}{9}.\dfrac{2}{7}+\dfrac{5}{9}.\dfrac{1}{7}+\dfrac{5}{9}.\dfrac{3}{7}\)
= \(\dfrac{5}{9}.\left(\dfrac{1}{7}+\dfrac{2}{7}+\dfrac{1}{7}+\dfrac{3}{7}\right)\)
= \(\dfrac{5}{9}\) . 1= \(\dfrac{5}{9}\)
Theo quy ước với mọi phân số lớn hơn 0 thì ta có:
\(\dfrac{a}{b}>0=>\dfrac{a}{b}< \dfrac{a+n}{b+n}\left(n\in N;n\ne0\right)\)
Áp dụng với bài trên ta => ĐPCM
CHÚC BẠN HỌC TỐT.......
Câu 1:
a) \(\dfrac{-15}{17}\) và \(\dfrac{-19}{21}\)
Ta có: \(\dfrac{-15}{17}=-1+\dfrac{2}{17}\); \(\dfrac{-19}{21}=-1+\dfrac{2}{21}\)
Vì \(\dfrac{2}{17}>\dfrac{2}{21}\)
Do đó: \(\dfrac{-15}{17}>\dfrac{19}{-23}\)
b) \(\dfrac{-13}{19}\) và \(\dfrac{19}{-23}\)
Ta có: \(\dfrac{19}{23}>\dfrac{19}{25}\); \(\dfrac{13}{19}=1-\dfrac{6}{19}\); \(\dfrac{19}{25}=1-\dfrac{6}{25}\)
mà \(\dfrac{6}{19}>\dfrac{6}{25}\) \(\Rightarrow\dfrac{13}{19}< \dfrac{19}{25}< \dfrac{19}{23}\)
Vì \(\dfrac{13}{19}< \dfrac{19}{23}\Rightarrow\dfrac{-13}{19}>\dfrac{19}{-23}\)
c) \(\dfrac{-24}{35}\) và \(\dfrac{-19}{30}\)
Ta có: \(\dfrac{-24}{35}=-1+\dfrac{19}{35}\);\(\dfrac{-19}{30}=-1+\dfrac{11}{30}\)
Vì \(\dfrac{11}{35}< \dfrac{11}{30}\)
Do đó: \(\dfrac{-24}{35}< \dfrac{-19}{30}\)
d) \(\dfrac{-1941}{1931}\) và \(\dfrac{-2011}{2001}\); \(\dfrac{-2011}{2001}=-1+\dfrac{10}{2001}\)
Vì \(\dfrac{10}{1931}< \dfrac{10}{1001}\)
Do đó: \(\dfrac{-1941}{1931}< \dfrac{-2011}{2001}\)
Ta có: \(\dfrac{-1941}{1931}=-1+\dfrac{10}{1931}\)
Sorry câu d mình viết ngược:
Làm lại:
d) \(\dfrac{-1941}{1931}\) và \(\dfrac{-2011}{2001}\)
Ta có: \(\dfrac{-1941}{1931}=-1+\dfrac{10}{1931};\)
\(\dfrac{-2011}{2001}=-1+\dfrac{10}{2001}\)
Vì \(\dfrac{10}{1931}< \dfrac{10}{1001}\)
Do đó: \(\dfrac{-1941}{1931}< \dfrac{-2011}{2001}\)