Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{-15}{17}=-1+\dfrac{2}{17}\\ -\dfrac{19}{21}=-1+\dfrac{2}{21}\\ Vì:\dfrac{2}{17}>\dfrac{2}{21}\Rightarrow-1+\dfrac{2}{17}>-1+\dfrac{2}{21}\Rightarrow-\dfrac{15}{17}>-\dfrac{19}{21}\\ b,-\dfrac{24}{35}=-1+\dfrac{11}{35};-\dfrac{19}{30}=-1+\dfrac{11}{30}\\ Vì:\dfrac{11}{35}< \dfrac{11}{30}\Rightarrow-1+\dfrac{11}{35}< -1+\dfrac{11}{30}\\ \Rightarrow-\dfrac{24}{35}< -\dfrac{19}{30}\)
Bài 1:
1: \(17A=\dfrac{17^{19}+17}{17^{19}+1}=1+\dfrac{16}{17^{19}+1}\)
\(17B=\dfrac{17^{18}+17}{17^{18}+1}=1+\dfrac{16}{17^{18}+1}\)
mà \(17^{19}+1>17^{18}+1\)
nên 17A>17B
hay A>B
2: \(C=\dfrac{98^{99}+98^{10}+1-98^{10}}{98^{89}+1}=98^{10}+\dfrac{1-98^{10}}{98^{89}+1}\)
\(D=\dfrac{98^{98}+98^{10}+1-98^{10}}{98^{88}+1}=98^{10}+\dfrac{1-98^{10}}{98^{88}+1}\)
mà \(98^{89}+1>98^{88}+1\)
nên C>D
`f)(-2)/17 + 15/23 + (-15)/17 + 4/19 + 8/23`
`= (-2/17+ -15/17)+(15/23+8/23)+4/19`
`= -1+1+4/19`
`= 0 +4/19`
`= 0`
`g)(-1)/2 + 3/21 + (-2)/6 + (-5)/30`
`= (-1)/2 + 1/7 + (-1)/3 + (-1)/6`
`= (-21)/42 + 6/42 + (-14)/42 + (-7)/42`
`=(-36)/42`
`=(-6)/7`
f)\(-\dfrac{2}{17}+\dfrac{15}{23}+-\dfrac{15}{17}+\dfrac{4}{19}+\dfrac{8}{23}\)
\(=\left(-\dfrac{2}{17}+-\dfrac{15}{17}\right)+\left(\dfrac{15}{23}+\dfrac{8}{23}\right)+\dfrac{4}{19}\)
\(=-1+1+\dfrac{4}{19}\)
\(=0+\dfrac{4}{19}=\dfrac{4}{19}\)
g)\(-\dfrac{1}{2}+\dfrac{3}{21}+-\dfrac{2}{6}+-\dfrac{5}{30}\)
\(=-\dfrac{1}{2}+\dfrac{1}{7}+-\dfrac{1}{3}+-\dfrac{1}{6}\)
\(=\left(-\dfrac{1}{2}+-\dfrac{1}{3}+-\dfrac{1}{6}\right)+\dfrac{1}{7}\)
\(=-\dfrac{3+2+1}{6}+\dfrac{1}{7}\)
\(=\dfrac{1}{7}-1\)
\(=\dfrac{1}{7}-\dfrac{7}{7}=-\dfrac{6}{7}\)
a: \(=\dfrac{8}{9}\cdot\dfrac{9}{4}\cdot\dfrac{12}{19}\cdot\dfrac{19}{24}=\dfrac{1}{2}\cdot2=1\)
b: \(=\dfrac{5}{16}\cdot\dfrac{17}{15}\cdot\dfrac{8}{17}=\dfrac{5}{16}\cdot\dfrac{8}{15}=\dfrac{40}{240}=\dfrac{1}{6}\)
c: \(=\dfrac{4}{13}\left(\dfrac{2}{7}+\dfrac{5}{7}\right)-\dfrac{3}{26}=\dfrac{4}{13}-\dfrac{3}{26}=\dfrac{5}{26}\)
c: \(=\dfrac{3}{4}\left(\dfrac{6}{11}+\dfrac{5}{11}\right)-\dfrac{1}{5}=\dfrac{3}{4}-\dfrac{1}{5}=\dfrac{11}{20}\)
Ta có :
\(\dfrac{1}{11}>\dfrac{1}{20}\\ \dfrac{1}{12}>\dfrac{1}{20}\\ ..........\\ \dfrac{1}{20}=\dfrac{1}{20}\)
\(\Rightarrow\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{20}>\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}\\ \Rightarrow S>\dfrac{10}{20}\\ \Rightarrow S>\dfrac{1}{2}\)
a) Giải
So sánh từng số hạng của A với B, ta thấy:
\(\dfrac{19}{41}< \dfrac{21}{41};\dfrac{23}{53}< \dfrac{23}{49}\) và \(\dfrac{29}{61}< \dfrac{33}{65}\) (vì 29.65 < 33.61)
\(\Rightarrow\dfrac{19}{41}+\dfrac{23}{53}+\dfrac{29}{61}< \dfrac{21}{41}+\dfrac{23}{49}+\dfrac{33}{65}\)
\(\Rightarrow A< B\)
Vậy A < B
b) Giải
Ta có: \(C=\dfrac{19^{20}+5}{19^{20}-8}=\dfrac{19^{20}-8+13}{19^{20}-8}=1+\dfrac{13}{19^{20}-8}\)
\(D=\dfrac{19^{21}+6}{19^{21}-7}=\dfrac{19^{21}-7+13}{19^{21}-7}=1+\dfrac{13}{19^{21}-7}\)
Vì \(19^{20}-8< 19^{21}-7\) và \(13>0\)
\(\Rightarrow\dfrac{13}{19^{20}-8}< \dfrac{13}{19^{21}-7}\)
\(\Rightarrow1+\dfrac{13}{19^{20}-8}< 1+\dfrac{13}{19^{21}-7}\)
\(\Rightarrow\) \(C< D\)
Vậy C < D.
a: \(17A=\dfrac{17^{19}+17}{17^{19}+1}=1+\dfrac{16}{17^{19}+1}\)
\(17B=\dfrac{17^{18}+17}{17^{18}+1}=1+\dfrac{16}{17^{18}+1}\)
mà 17^19+1>17^18+1
nên A<B
b: \(2C=\dfrac{2^{2021}-2}{2^{2021}-1}=1-\dfrac{1}{2^{2021}-1}\)
\(2D=\dfrac{2^{2022}-2}{2^{2022}-1}=1-\dfrac{1}{2^{2022}-1}\)
2^2021-1<2^2022-1
=>1/2^2021-1>1/2^2022-1
=>-1/2^2021-1<-1/2^2022-1
=>C<D
Câu 1:
a) \(\dfrac{-15}{17}\) và \(\dfrac{-19}{21}\)
Ta có: \(\dfrac{-15}{17}=-1+\dfrac{2}{17}\); \(\dfrac{-19}{21}=-1+\dfrac{2}{21}\)
Vì \(\dfrac{2}{17}>\dfrac{2}{21}\)
Do đó: \(\dfrac{-15}{17}>\dfrac{19}{-23}\)
b) \(\dfrac{-13}{19}\) và \(\dfrac{19}{-23}\)
Ta có: \(\dfrac{19}{23}>\dfrac{19}{25}\); \(\dfrac{13}{19}=1-\dfrac{6}{19}\); \(\dfrac{19}{25}=1-\dfrac{6}{25}\)
mà \(\dfrac{6}{19}>\dfrac{6}{25}\) \(\Rightarrow\dfrac{13}{19}< \dfrac{19}{25}< \dfrac{19}{23}\)
Vì \(\dfrac{13}{19}< \dfrac{19}{23}\Rightarrow\dfrac{-13}{19}>\dfrac{19}{-23}\)
c) \(\dfrac{-24}{35}\) và \(\dfrac{-19}{30}\)
Ta có: \(\dfrac{-24}{35}=-1+\dfrac{19}{35}\);\(\dfrac{-19}{30}=-1+\dfrac{11}{30}\)
Vì \(\dfrac{11}{35}< \dfrac{11}{30}\)
Do đó: \(\dfrac{-24}{35}< \dfrac{-19}{30}\)
d) \(\dfrac{-1941}{1931}\) và \(\dfrac{-2011}{2001}\); \(\dfrac{-2011}{2001}=-1+\dfrac{10}{2001}\)
Vì \(\dfrac{10}{1931}< \dfrac{10}{1001}\)
Do đó: \(\dfrac{-1941}{1931}< \dfrac{-2011}{2001}\)
Ta có: \(\dfrac{-1941}{1931}=-1+\dfrac{10}{1931}\)
Sorry câu d mình viết ngược:
Làm lại:
d) \(\dfrac{-1941}{1931}\) và \(\dfrac{-2011}{2001}\)
Ta có: \(\dfrac{-1941}{1931}=-1+\dfrac{10}{1931};\)
\(\dfrac{-2011}{2001}=-1+\dfrac{10}{2001}\)
Vì \(\dfrac{10}{1931}< \dfrac{10}{1001}\)
Do đó: \(\dfrac{-1941}{1931}< \dfrac{-2011}{2001}\)