\(\sqrt{11}+6\sqrt{2}-3+\sqrt{2}\)

câu 2:áp dụn...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2017

a)\(\sqrt{45.80}=\sqrt{9.400}=\sqrt{9}.\sqrt{400}=3.20=60\)

b) \(\sqrt{75.48}=\sqrt{25.3.16.3}=\sqrt{5^2.3^2.4^2}=5.4.3=60\)

c)\(\sqrt{90.6,4}=\sqrt{10.9.4.1,6}=\sqrt{4^2.3^2.2^2}=4.3.2=24\)

d) \(\sqrt{2,5.14,4}=\sqrt{\dfrac{25}{10}.\dfrac{144}{10}}=\sqrt{\dfrac{25.144}{100}}=\sqrt{\left(\dfrac{5.12}{10}\right)^2}=\dfrac{5.12}{10}=6\)

13 tháng 9 2017

a) \(\sqrt{45.80}=\sqrt{9.400}=\sqrt{9}.\sqrt{400}=3.20=60\)

b)\(\sqrt{75.48}=\sqrt{25.3.3.16}=5.3.4=60\)

c)\(\sqrt{90.6,4}=\sqrt{9.64}=3.8=24\)

d)\(\sqrt{2,5.14,4}=\sqrt{\dfrac{25}{10}.\dfrac{144}{10}}=\sqrt{\dfrac{25.144}{100}=\dfrac{5.12}{10}=\dfrac{60}{10}=6}\)

14 tháng 8 2016

a)\(\sqrt{75\cdot48}=\sqrt{25\cdot3\cdot48}=\sqrt{25\cdot144}=\sqrt{25}\cdot\sqrt{144}=5\cdot12=60\)

b) \(\sqrt{2,5\cdot14,4}=\sqrt{25\cdot144\cdot\frac{1}{100}}=\sqrt{25}\cdot\sqrt{144}\cdot\sqrt{\frac{1}{100}}=5\cdot12\cdot\frac{1}{10}=6\)

15 tháng 7 2019

\(\frac{3\sqrt{128}}{\sqrt{2}}=\frac{\sqrt{9.128}}{\sqrt{2}}=\sqrt{\frac{1152}{2}}=\sqrt{576}=24\)

12 tháng 7 2019

\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=|2+\sqrt{3}|-|2-\sqrt{3}|\)

\(=2+\sqrt{3}-2+\sqrt{3}\)

\(=2\sqrt{3}\)

\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)

\(=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=|3+\sqrt{2}|-|3-\sqrt{2}|\)

\(=3+\sqrt{2}-3+\sqrt{2}\)

\(=2\sqrt{2}\)

\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)

\(=\sqrt{\left(3+2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}\)

\(=|3+2\sqrt{2}|+|3-2\sqrt{2}|\)

\(=3+2\sqrt{2}+3-2\sqrt{2}\)

\(=6\)

\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)

\(=|2+\sqrt{5}|-|2-\sqrt{5}|\)

\(=2+\sqrt{5}-\sqrt{5}+2\)

\(=4\)

\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{\left(1-\sqrt{5}\right)^2}\)

\(=|1+\sqrt{5}|-|1-\sqrt{5}|\)

\(=1+\sqrt{5}-\sqrt{5}+1\)

\(=2\)

12 tháng 7 2019

\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(A=\sqrt{3}+2+2-\sqrt{3}\)

A = 2 + 2

A = 4

\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)

\(B=\sqrt{2}+3+3-\sqrt{2}\)

B = 3 + 3

B = 6

\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)

\(C=3+2\sqrt{2}+3-2\sqrt{2}\)

C = 3 + 3

C = 6

\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(D=\sqrt{5}+2-\sqrt{5}+2\)

D = 2 + 2

D = 4

\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)

\(E=\sqrt{5}+1-\sqrt{5}+1\)

E = 1 + 1

E = 2

a: \(=10\sqrt{2}-4\sqrt{2}+6\sqrt{2}=12\sqrt{2}\)

b: \(=5\sqrt{7}-4\sqrt{7}+3\sqrt{7}=4\sqrt{7}\)

c: \(=\dfrac{3}{2}\sqrt{6}+\dfrac{2}{3}\sqrt{6}-2\sqrt{6}=\dfrac{1}{6}\sqrt{6}\)

d: \(=8\sqrt{5}-15\sqrt{5}+15\sqrt{5}-3\sqrt{5}=5\sqrt{5}\)

e: \(=\sqrt{5}+\dfrac{2}{5}\sqrt{5}+\sqrt{5}=2.4\sqrt{5}\)

f: \(=\dfrac{1}{5}\sqrt{5}+\dfrac{3}{2}\sqrt{2}+\dfrac{5}{2}\sqrt{2}=\dfrac{1}{5}\sqrt{5}+4\sqrt{2}\)