Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chia nhỏ ra cậu ơi :v
Cậu đặt câu hỏi free nên đặt nhỏ ra thì mới có người làm nha để như này dày cộp không ai dám làm đou =(((
a) \(\left(x^5+4x^3-6x^2\right):4x^2\)
\(=\left(x^5:4x^2\right)+\left(4x^3:4x^2\right)+\left(-6x^2:4x^2\right)\)
\(=\dfrac{1}{4}x^3+x-\dfrac{3}{2}\)
b)
Vậy \(\left(x^3+x^2-12\right):\left(x-2\right)=x^2+3x+6\)
c) (-2x5 : 2x2) + (3x2 : 2x2) + (-4x^3 : 2x^2)
= \(-x^3+\dfrac{3}{2}-2x\)
d) \(\left(x^3-64\right):\left(x^2+4x+16\right)\)
\(=\left(x-4\right)\left(x^2+4x+16\right):\left(x^2+4x+16\right)\)
\(=x-4\)
(dùng hẳng đẳng thức thứ 7)
Bài 2 :
a) 3x(x - 2) - 5x(1 - x) - 8(x2 - 3)
= 3x2 - 6x - 5x + 5x2 - 8x2 + 24
= (3x2 + 5x2 - 8x2) + (-6x - 5x) + 24
= -11x + 24
b) (x - y)(x2 + xy + y2) + 2y3
= x3 - y3 + 2y3
= x3 + y3
c) (x - y)2 + (x + y)2 - 2(x - y)(x + y)
= (x - y)2 - 2(x - y)(x + y) + (x + y)2
= [(x - y) + x + y)2 = [x - y + x + y] = (2x)2 = 4x2
Bài 1 :
a]= \(\frac{1}{4}\)x3 + x - \(\frac{3}{2}\).
b] => [x3 + x2 -12 ] = [ x2 +3 ][x-2] + [-6]
c]= -x3 -2x +\(\frac{3}{2}\).
d] = [ x3 - 64 ] = [ x2 + 4x + 16][ x- 4].
a) x⁴ + 2x² + 1
= (x²)² + 2.x².1 + 1²
= (x² + 1)²
b) 4x² - 12xy + 9y²
= (2x)² - 2.2x.3y + (3y)²
= (2x - 3y)²
c) -x² - 2xy - y²
= -(x² + 2xy + y²)
= -(x + y)²
d) (x + y)² - 2(x + y) + 1
= (x + y)² - 2.(x + y).1 + 1²
= (x - y + 1)²
e) x³ - 3x² + 3x - 1
= x³ - 3.x².1 + 3.x.1² - 1³
= (x - 1)³
g) x³ + 6x² + 12x + 8
= x³ + 3.x².2 + 3.x.2² + 2³
= (x + 2)³
h) x³ + 1 - x² - x
= (x³ + 1) - (x² + x)
= (x + 1)(x² - x + 1) - x(x + 1)
= (x + 1)(x² - x + 1 - x)
= (x + 1)(x² - 2x + 1)
= (x + 1)(x - 1)²
k) (x + y)³ - x³ - y³
= (x + y)³ - (x³ + y³)
= (x + y)³ - (x + y)(x² - xy + y²)
= (x + y)[(x + y)² - x² + xy - y²]
= (x + y)(x² + 2xy + y² - x² + xy - y²)
= (x + y).3xy
= 3xy(x + y)
Câu 1:
a) 2x(3x+2) - 3x(2x+3) = 6x^2+4x - 6x^2-9x = -5x
b) \(\left(x+2\right)^3+\left(x-3\right)^2-x^2\left(x+5\right)\)
\(=x^3+6x^2+12x+8+x^2-6x+9-x^3-5x^2\)
\(=2x^2+6x+17\)
c) \(\left(3x^3-4x^2+6x\right)\div\left(3x\right)=x^2-\dfrac{4}{3}x+2\)
a.
\(1-4x^2=\left(1-2x\right)\left(1+2x\right)\)
b.
\(8-27x^3=\left(2\right)^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
c.
\(27+27x+9x^2+x^3=x^3+3.x^2.3+3.3^2.x+3^3\)
\(=\left(x+3\right)^3\)
d.
\(2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)^2\)
e.
\(x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-5\right)\)
f.
\(x^2-6x+9-y^2=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
a) x³y + x - y - 1
= (x³y - y) + (x - 1)
= y(x³ - 1) + (x - 1)
= y(x - 1)(x² + x + 1) + (x - 1)
= (x - 1)[y(x² + x + 1) + 1]
= (x - 1)(x²y + xy + y + 1)
b) x²(x - 2) + 4(2 - x)
= x²(x - 2) - 4(x - 2)
= (x - 2)(x² - 4)
= (x - 2)(x - 2)(x + 2)
= (x - 2)²(x + 2)
c) x³ - x² - 20x
= x(x² - x - 20)
= x(x² + 4x - 5x - 20)
= x[(x² + 4x) - (5x + 20)]
= x[x(x + 4) - 5(x + 4)]
= x(x + 4)(x - 5)
d) (x² + 1)² - (x + 1)²
= (x² + 1 - x - 1)(x² + 1 + x + 1)
= (x² - x)(x² + x + 2)
= x(x - 1)(x² + x + 2)
e) 6x² - 7x + 2
= 6x² - 3x - 4x + 2
= (6x² - 3x) - (4x - 2)
= 3x(2x - 1) - 2(2x - 1)
= (2x - 1)(3x - 2)
f) x⁴ + 8x² + 12
= x⁴ + 2x² + 6x² + 12
= (x⁴ + 2x²) + (6x² + 12)
= x²(x² + 2) + 6(x² + 2)
= (x² + 2)(x² + 6)
g) (x³ + x + 1)(x³ + x) - 2
Đặt u = x³ + x
x³ + x + 1 = u + 1
(u + 1).u - 2
= u² + u - 2
= u² - u + 2u - 2
= (u² - u) + (2u - 2)
= u(u - 1) + 2(u - 1)
= (u - 1)(u + 2)
= (x³ + x - 1)(x³ + x + 2)
= (x³ + x - 1)(x³ + x² - x² - x + 2x + 2)
= (x³ + x - 1)[(x³ + x²) - (x² + x) + (2x + 2)]
= (x³ + x - 1)[x²(x + 1) - x(x + 1) + 2(x + 1)]
= (x³ + x - 1)(x - 1)(x² - x + 2)
h) (x + 1)(x + 2)(x + 3)(x + 4) - 1
= [(x + 1)(x + 4)][(x + 2)(x + 3)] - 1
= (x² + 5x + 4)(x² + 5x + 6) - 1 (1)
Đặt u = x² + 5x + 4
u + 2 = x² + 5x + 6
(1) u.(u + 2) - 1
= u² + 2u - 1
= u² + 2u + 1 - 2
= (u² + 2u + 1) - 2
= (u + 1)² - 2
= (u + 1 + √2)(u + 1 - √2)
= (x² + 5x + 4 + 1 + √2)(x² + 5x + 4 + 1 - √2)
= (x² + 5x + 5 + √2)(x² + 5x + 5 - √2)
Bài 2:
a: \(x^2+5x-6=\left(x+6\right)\left(x-1\right)\)
b: \(5x^2+5xy-x-y\)
\(=5x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(5x-1\right)\)
c:\(-6x^2+7x-2\)
\(=-6x^2+3x+4x-2\)
\(=-3x\left(2x-1\right)+2\left(2x-1\right)\)
\(=\left(2x-1\right)\left(-3x+2\right)\)
1.
a) \(=x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2\)
b) \(=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
c) \(=5\left[\left(x^2-2xy+y^2\right)-4z^2\right]=5\left[\left(x-y\right)^2-4z^2\right]\)
\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)
2.
a) \(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)
b) \(=5x\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(5x-1\right)\)
c) \(=-\left[3x\left(2x-1\right)-2\left(2x-1\right)\right]=-\left(2x-1\right)\left(3x-2\right)\)
3.
b) \(=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)
c) \(=-\left[5x\left(x-3\right)-1\left(x-3\right)\right]=-\left(x-3\right)\left(5x-1\right)\)
4.
a) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
b) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Rightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
1
a) 2x - x2 - 1
-(x+1)2
b) x(x+y) - 5(x+y)
(x-5)(x+y)
Câu 1 :
\(a,\left(x-1\right)-\left(x^2-x\right)\)
\(=x-1-x^2+x\)
\(=-x^2+2x-1\)
\(=-\left(x-1\right)^2\)
\(b,\left(x+1\right)+\left(x-1\right)\)
\(=x+1+x-1\)
\(=2x\)
Câu 2 :
\(a,6x^2+3x=3x\left(2x+1\right)\)
\(b,x.\left(x+y\right)-5x-5y\)
\(=x^2+xy-5x-5y\)
\(=\left(x^2-5x\right)+\left(xy-5y\right)\)
\(=x\left(x-5\right)+y\left(x-5\right)\)
\(=\left(x-5\right)\left(x+y\right)\)
\(c,4x^2-25=\left(2x-5\right)\left(2x+5\right)\)
\(d,6x^2-7x+1\)
\(=6x^2-6x-x+1\)
\(=6x\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(6x-1\right)\)