Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 50:
\(\dfrac{5}{\sqrt{10}}=\dfrac{5\sqrt{10}}{10}=\dfrac{\sqrt{10}}{2}\)
\(\dfrac{5}{2\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)
\(\dfrac{1}{3\sqrt{20}}=\dfrac{1}{6\sqrt{5}}=\dfrac{\sqrt{5}}{30}\)
\(\dfrac{2\sqrt{2}+2}{5\sqrt{2}}=\dfrac{\sqrt{2}\left(2+\sqrt{2}\right)}{5\sqrt{2}}=\dfrac{2+\sqrt{2}}{5}\)
bài 1) a) \(xy\sqrt{\dfrac{x}{y}}=x\sqrt{y}\sqrt{y}\dfrac{\sqrt{x}}{\sqrt{y}}=x\sqrt{x}\sqrt{y}=\left(\sqrt{x}\right)^3\sqrt{y}\)
b) \(\sqrt{\dfrac{5a^3}{49b}}=\dfrac{\sqrt{5a^3}}{\sqrt{49b}}=\dfrac{\sqrt{5a^3}}{7\sqrt{b}}=\dfrac{\sqrt{5a^3}.\sqrt{b}}{7\sqrt{b}.\sqrt{b}}=\dfrac{\sqrt{5a^3b}}{7b}\)
bài 2) a) \(\dfrac{\sqrt{3}-3}{1-\sqrt{3}}=\dfrac{\sqrt{3}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}=\sqrt{3}\)
b) \(\dfrac{5-\sqrt{15}}{\sqrt{3}-\sqrt{5}}=\dfrac{-\sqrt{5}\left(\sqrt{3}-\sqrt{5}\right)}{\sqrt{3}-\sqrt{5}}=-\sqrt{5}\)
c) \(\dfrac{2\sqrt{2}+2}{5\sqrt{2}}=\dfrac{\sqrt{2}\left(2+\sqrt{2}\right)}{5\sqrt{2}}=\dfrac{2+\sqrt{2}}{5}\)
bài 2:
a: \(\dfrac{25}{5-2\sqrt{3}}=\dfrac{125+10\sqrt{3}}{13}\)
b: \(\dfrac{8}{\sqrt{5}+2}=8\sqrt{5}-32\)
c: \(\dfrac{6}{2\sqrt{3}-\sqrt{7}}=\dfrac{12\sqrt{3}+6\sqrt{7}}{5}\)
d: \(=\dfrac{\sqrt{3}\left(3\sqrt{3}-2\right)}{\sqrt{2}\left(3\sqrt{3}-2\right)}=\dfrac{\sqrt{6}}{2}\)
a) \(\dfrac{\sqrt{2}}{1+\sqrt{2}-\sqrt{3}}=\dfrac{\sqrt{2}\left(1+\sqrt{2}+\sqrt{3}\right)}{\left(1+\sqrt{2}-\sqrt{3}\right)\left(1+\sqrt{2}+\sqrt{3}\right)}\dfrac{\sqrt{2}+2+\sqrt{6}}{\left(1+\sqrt{2}\right)^2-3}=\dfrac{\sqrt{2}+2+\sqrt{6}}{2\sqrt{2}+3-3}=\dfrac{\sqrt{2}+2+\sqrt{6}}{2\sqrt{2}}=\dfrac{1+\sqrt{2}+\sqrt{3}}{2}\)
b) \(\dfrac{1}{\sqrt{3}+\sqrt{2}-\sqrt{5}}=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)}=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}\right)^2-5}=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{2\sqrt{6}+5-5}=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{2\sqrt{6}}=\dfrac{3\sqrt{2}+2\sqrt{3}+\sqrt{30}}{2\sqrt{6}\cdot\sqrt{6}}=\dfrac{3\sqrt{2}+2\sqrt{3}+\sqrt{30}}{12}\)
Bài 3:
a: \(=\dfrac{3+2\sqrt{2}}{1}-\dfrac{\sqrt{2}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}\)
\(=3+2\sqrt{2}-\sqrt{2}=3+\sqrt{2}\)
b: \(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{a-b}\cdot\sqrt{\dfrac{ab+b^2-2b\sqrt{ab}}{a^2+2a\sqrt{b}+b}}\)
\(=\dfrac{\sqrt{b}\left(a+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\left(\sqrt{ab}-b\right)}{\left(a+\sqrt{b}\right)^2}\)
\(=\dfrac{\sqrt{b}}{\sqrt{a}-\sqrt{b}}\cdot\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{a+\sqrt{b}}=\dfrac{b}{a+\sqrt{b}}\)
c: \(=x+\sqrt{x}-2\sqrt{x}-1+1=x-\sqrt{x}\)
a: \(\dfrac{5}{3\sqrt{8}}=\dfrac{5\sqrt{2}}{3\cdot4}=\dfrac{5\sqrt{2}}{12}\)
\(\dfrac{2}{\sqrt{b}}=\dfrac{2\sqrt{b}}{b}\)
b: \(\dfrac{5}{5-2\sqrt{3}}=\dfrac{25+10\sqrt{3}}{13}\)
\(\dfrac{2a}{1-\sqrt{a}}=\dfrac{2a\left(1+\sqrt{a}\right)}{1-a}\)
c: \(\dfrac{4}{\sqrt{7}+\sqrt{5}}=\dfrac{4\left(\sqrt{7}-\sqrt{5}\right)}{2}=2\sqrt{7}-2\sqrt{5}\)
\(\dfrac{6a}{2\sqrt{a}-\sqrt{b}}=\dfrac{6a\left(2\sqrt{a}+\sqrt{b}\right)}{4a-b}\)
Lời giải:
a) \(\frac{1}{1-\sqrt[3]{5}}=\frac{1+\sqrt[3]{5}+\sqrt[3]{5^2}}{(1-\sqrt[3]{5})(1+\sqrt[3]{5}+\sqrt[3]{25})}\) \(=\frac{1+\sqrt[3]{5}+\sqrt[3]{25}}{1^3-5}=\frac{1+\sqrt[3]{5}+\sqrt[3]{25}}{-4}\)
b)
\(\frac{1}{\sqrt[3]{2}+\sqrt[3]{3}}=\frac{\sqrt[3]{2^2}-\sqrt[3]{6}+\sqrt[3]{3^2}}{(\sqrt[3]{2}+\sqrt[3]{3})(\sqrt[3]{2^2}-\sqrt[3]{6}+\sqrt[3]{3^2})}\) \(=\frac{\sqrt[3]{4}-\sqrt[3]{6}+\sqrt[3]{9}}{2+3}=\frac{\sqrt[3]{4}-\sqrt[3]{6}+\sqrt[3]{9}}{5}\)
c)
\(\frac{1}{1+\sqrt[3]{2}+\sqrt[3]{4}}=\frac{\sqrt[3]{2}-1}{(\sqrt[3]{2}-1)(\sqrt[3]{2^2}+\sqrt[3]{2}+1)}=\frac{\sqrt[3]{2}-1}{2-1}=\sqrt[3]{2}-1\)
Câu 1:
\(2\sqrt{\dfrac{3}{20}}+\sqrt{\dfrac{1}{60}}-\sqrt{\dfrac{1}{15}}\)
= \(\sqrt{\dfrac{2^2\cdot3}{20}}+\sqrt{\dfrac{1}{60}}-\sqrt{\dfrac{1}{15}}\)
= \(\sqrt{\dfrac{12}{20}}+\sqrt{\dfrac{1}{60}}-\sqrt{\dfrac{1}{15}}\)
= \(\dfrac{\sqrt{12}\cdot\sqrt{20}}{\left(\sqrt{20}\right)^2}+\dfrac{\sqrt{60}}{\left(\sqrt{60}\right)^2}-\dfrac{\sqrt{15}}{\left(\sqrt{15}\right)^2}\)
= \(\dfrac{\sqrt{240}}{20}+\dfrac{\sqrt{60}}{60}-\dfrac{\sqrt{15}}{15}\)
= \(\dfrac{\sqrt{15}}{5}+\dfrac{\sqrt{15}}{30}-\dfrac{\sqrt{15}}{15}\)
= \(\sqrt{15}\cdot\left(\dfrac{1}{5}+\dfrac{1}{30}-\dfrac{1}{15}\right)\)
= \(\sqrt{15}\cdot\dfrac{1}{6}\) = \(\dfrac{\sqrt{15}}{6}\)
Bài 2:
a)\(\dfrac{1}{\sqrt{18}+\sqrt{8}-2\sqrt{2}}=\dfrac{1}{\sqrt{18}+2\sqrt{2}-2\sqrt{2}}=\dfrac{1}{\sqrt{18}}=\dfrac{\sqrt{18}}{18}=\dfrac{\sqrt{2}}{6}\)
b)\(\dfrac{\sqrt{2}}{1+\sqrt{2}-\sqrt{3}}=\dfrac{\sqrt{2}\cdot\left(1+\sqrt{2}+\sqrt{3}\right)}{\left(1+\sqrt{2}\right)^2-3}=\dfrac{\sqrt{2}\cdot\left(1+\sqrt{2}+\sqrt{3}\right)}{1+2\sqrt{2}+2-3}=\dfrac{\sqrt{2}\cdot\left(1+\sqrt{2}+\sqrt{3}\right)}{2\sqrt{2}}=\dfrac{1}{2}\cdot\left(1+\sqrt{2}+\sqrt{3}\right)\)c) \(\dfrac{1}{\sqrt{3}+\sqrt{2}-\sqrt{5}}=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{\left(\sqrt{3}+\sqrt{2}\right)^2-5}=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{3+2\sqrt{6}+2-5}=\dfrac{\sqrt{3}+\sqrt{2}+\sqrt{5}}{2\sqrt{6}}=\dfrac{\sqrt{6}\cdot\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)}{2\left(\sqrt{6}\right)^2}=\dfrac{\sqrt{6}}{12}\cdot\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)\)