Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1
a)C1:denta
x^2 +5x+4 =0
<=>52-4(1.4)=9
\(\Leftrightarrow x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-5\pm\sqrt{9}}{2}\)
=>x=-4 hoặc -1
C2:vi ét
tổng các nghiệm x1+x2=\(-\frac{b}{a}=-5\)
tích các nghiệm x1*x2=\(\frac{c}{a}=4\)
=>x=-4 hoặc -1
Bài 2 xét x=0 => A =0
xét x>0 thì \(A=\frac{1}{x-2+\frac{2}{\sqrt{x}}}\)
để A nguyên thì \(x-2+\frac{2}{\sqrt{x}}\inƯ\left(1\right)\)
=>cho \(x-2+\frac{2}{\sqrt{x}}\)bằng 1 và -1 rồi giải ra =>x=?
1,Ta có \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}\)
=> \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=2\)
\(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)
\(b+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)\)
\(c+2=\left(\sqrt{c}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)
=> \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{b}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}+...\)
=> \(\frac{\sqrt{a}}{a+2}+...=\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
=> M=0
Vậy M=0
a) \(2x^3-5x^2+2x=0\)
<=> \(x\left(2x^2-5x+2\right)=0\)
<=> \(\orbr{\begin{cases}x=0\\2x^2-5x+2=0\left(1\right)\end{cases}}\)
Giải (1) : \(\Delta=\left(-5\right)^2-4.2.2=9>0\)
pt (1) có 2 nghiệm phân biệt:
\(\orbr{\begin{cases}x=\frac{5-\sqrt{9}}{2.2}=\frac{1}{2}\\x=\frac{5+\sqrt{9}}{2.2}=2\end{cases}}\)
Vậy có 3 nghiệm phân biệt...
b) \(\hept{\begin{cases}2x+3y=-7\\x=-2-2y\end{cases}\Leftrightarrow}\hept{\begin{cases}2\left(-2-2y\right)+3y=-7\\x=-2-2y\end{cases}\Leftrightarrow\hept{\begin{cases}-4-4y+3y=-7\\x=-2-2y\end{cases}\Leftrightarrow}\hept{\begin{cases}y=3\\x=-8\end{cases}}}\)
d) phương trình có : \(\Delta=\left(2m-1\right)^2-4.2.\left(m-1\right)=4m^2-4m+1-8m+8=4m^2-12m+9=\left(2m-3\right)^2\ge0\)
Với mọi m
Như vậy phương trình có nghiệm với mọi m
Lời giải:
a) Theo định lý Vi-et:
\(\left\{\begin{matrix} x_1+x_2=\frac{-3}{4}\\ x_1x_2=\frac{-m^2+3m}{4}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -2+x_2=\frac{-3}{4}\\ (-2)x_2=\frac{-m^2+3m}{4}\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x_2=\frac{5}{4}\\ (-2)x_2=\frac{-m^2+3m}{4}\end{matrix}\right.\)
\(\Rightarrow \frac{-m^2+3m}{4}=(-2).\frac{5}{4}=\frac{-10}{4}\)
\(\Rightarrow -m^2+3m=-10\)
\(\Leftrightarrow m^2-3m-10=0\Leftrightarrow (m-5)(m+2)=0\Rightarrow \left[\begin{matrix} m =5\\ m=-2\end{matrix}\right.\)
b)
Theo định lý Vi-et \(\left\{\begin{matrix} x_1+x_2=\frac{2(m-3)}{3}\\ x_1x_2=\frac{5}{3}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{3}+x_2=\frac{2(m-3)}{3}\\ \frac{1}{3}x_2=\frac{5}{3}\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} \frac{1}{3}+x_2=\frac{2(m-3)}{3}\\ x_2=5\end{matrix}\right.\)
\(\Rightarrow \frac{2(m-3)}{3}=\frac{1}{3}+5=\frac{16}{3}\)
\(\Rightarrow 2(m-3)=16\Rightarrow m=11\)
Lời giải:
a) Theo định lý Vi-et:
\(\left\{\begin{matrix} x_1+x_2=\frac{-3}{4}\\ x_1x_2=\frac{-m^2+3m}{4}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -2+x_2=\frac{-3}{4}\\ (-2)x_2=\frac{-m^2+3m}{4}\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x_2=\frac{5}{4}\\ (-2)x_2=\frac{-m^2+3m}{4}\end{matrix}\right.\)
\(\Rightarrow \frac{-m^2+3m}{4}=(-2).\frac{5}{4}=\frac{-10}{4}\)
\(\Rightarrow -m^2+3m=-10\)
\(\Leftrightarrow m^2-3m-10=0\Leftrightarrow (m-5)(m+2)=0\Rightarrow \left[\begin{matrix} m =5\\ m=-2\end{matrix}\right.\)
b)
Theo định lý Vi-et \(\left\{\begin{matrix} x_1+x_2=\frac{2(m-3)}{3}\\ x_1x_2=\frac{5}{3}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{3}+x_2=\frac{2(m-3)}{3}\\ \frac{1}{3}x_2=\frac{5}{3}\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} \frac{1}{3}+x_2=\frac{2(m-3)}{3}\\ x_2=5\end{matrix}\right.\)
\(\Rightarrow \frac{2(m-3)}{3}=\frac{1}{3}+5=\frac{16}{3}\)
\(\Rightarrow 2(m-3)=16\Rightarrow m=11\)