\(\dfrac{x+2}{x-2}-\dfr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2023

\(a,3x-12=0\)

\(\Leftrightarrow3x=12\)

\(\Leftrightarrow x=4\)

\(b,\left(x-2\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{3}{2}\end{matrix}\right.\)

\(c,\dfrac{x+2}{x-2}-\dfrac{6}{x+2}=\dfrac{x^2}{x^2-4}\left(dkxd:x\ne\pm2\right)\)

\(\Leftrightarrow\dfrac{\left(x+2\right)^2-6\left(x-2\right)-x^2}{x^2-4}=0\)

\(\Leftrightarrow x^2+4x+4-6x+12-x^2=0\)

\(\Leftrightarrow-2x+16=0\)

\(\Leftrightarrow-2x=-16\)

\(\Leftrightarrow x=8\left(tmdk\right)\)

\(a,3x-12=0\)

\(\Leftrightarrow3x=12\)

\(\Leftrightarrow x=4.\)

Vậy \(S=\left\{4\right\}\)

\(b,\left(x-2\right)\left(2x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2=0\\2x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2.\\x=\dfrac{-3}{2}.\end{matrix}\right.\)

Vậy \(S=\left\{2;\dfrac{-3}{2}\right\}\)

\(c,\dfrac{x+2}{x-2}-\dfrac{6}{x+2}=\dfrac{x^2}{x^2-4}\left(ĐKXĐ:x\ne\pm2\right)\)

\(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{6\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\dfrac{x^2+4x+4}{\left(x-2\right)\left(x+2\right)}-\dfrac{6x-12}{\left(x-2\right)\left(x+2\right)}-\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Rightarrow x^2+4x+4-6x+12-x^2=0\)

\(\Leftrightarrow-2x+16=0\)

\(\Leftrightarrow-2x=-16\)

\(\Leftrightarrow x=8\left(tm\right).\)

Vậy \(S=\left\{8\right\}\)

23 tháng 2 2019

Câu 1:

Hỏi đáp Toán

23 tháng 2 2019

Câu 2:

ĐKXĐ: \(\left[{}\begin{matrix}1-9x^2\ne0\\1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Rightarrow \left[{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)

\(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\left(1\right)\)

\(\left(1\right):\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}-\dfrac{\left(1-3x\right)\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\dfrac{\left(1+3x\right)\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}=0\)

\(\Leftrightarrow 12-\left(1-3x-3x+9x^2\right)+\left(1+3x+3x+9x^2\right)=0\)

\(\Leftrightarrow 12-1+3x+3x-9x^2+1+3x+3x+9x^2=0\)

\(\Leftrightarrow12x+12=0\\ \Leftrightarrow12x=-12\\ \Leftrightarrow x=-1\left(TM\right)\)

Vậy \(S=\left\{-1\right\}\)

4 tháng 3 2018

a) ĐKXĐ: \(x\ne\pm2\)

Ta có: \(\dfrac{x}{x+2}=\dfrac{x^2+4}{x^2-4}\)

\(\Leftrightarrow\dfrac{x}{x+2}=\dfrac{x^2+4}{\left(x+2\right)\left(x-2\right)}\)

\(\Leftrightarrow\dfrac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{x^2+4}{\left(x+2\right)\left(x-2\right)}\)

\(\Rightarrow x\left(x-2\right)=x^2+4\)

\(\Leftrightarrow x^2-2x=x^2+4\)

\(\Leftrightarrow-2x=4\Leftrightarrow x=-2\)(KTMĐK)

Vậy phương trình vô nghiệm

4 tháng 3 2018

b) ĐKXĐ: \(x\ne3;x\ne-1\)

Ta có: \(\dfrac{x}{2x-6}+\dfrac{x}{2x+2}+\dfrac{2x}{\left(x+1\right)\left(3-x\right)}=0\)

\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x+1\right)}-\dfrac{2x}{\left(x+1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}-\dfrac{2.2x}{2\left(x+1\right)\left(x-3\right)}=0\)

\(\Rightarrow x\left(x+1\right)+x\left(x-3\right)-2.2x=0\)

\(\Leftrightarrow x^2+x+x^2-3x-4x=0\)

\(\Leftrightarrow2x^2-6x=0\)

\(\Leftrightarrow2x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TMĐK\right)\\x=3\left(KTMĐK\right)\end{matrix}\right.\)

Vậy phương trình có nghiệm là \(x=0\)

30 tháng 4 2018

\(\text{a) }\left(x^2-9\right)^2-9\left(x-3\right)^2=0\\ \Leftrightarrow\left(x+3\right)^2\left(x-3\right)^2-9\left(x-3\right)^2=0\\ \Leftrightarrow\left(x^2+6x+9-9\right)\left(x-3\right)^2=0\\ \Leftrightarrow\left(x^2+6x\right)\left(x-3\right)^2=0\\ \Leftrightarrow x\left(x+6\right)\left(x-3\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x+6=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x+6=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\\x=3\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{0;3;-6\right\}\)

\(\text{b) }\dfrac{3x^2+7x-10}{x}=0\\ ĐKXĐ:x\ne0\\ \Rightarrow3x^2+7x-10=0\\ \Leftrightarrow3x^2-3x+10x-10=0\\ \Leftrightarrow\left(3x^2-3x\right)+\left(10x-10\right)=0\\ \Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\\ \Leftrightarrow\left(3x+10\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x+10=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-10\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{10}{3}\\x=1\end{matrix}\right.\left(T/m\right)\)

Vậy phương trình có tập nghiệm \(S=\left\{-\dfrac{10}{3};1\right\}\)

\(\text{c) }x+\dfrac{2x+\dfrac{x-1}{5}}{3}=1-\dfrac{3x+\dfrac{1-2x}{3}}{5}\left(\text{Chữa đề}\right)\\ \Leftrightarrow15x+5\left(2x+\dfrac{x-1}{5}\right)=15-3\left(3x+\dfrac{1-2x}{3}\right)\\ \Leftrightarrow15x+10x+\left(x-1\right)=15-9x+\left(1-2x\right)\\ \Leftrightarrow15x+10x+x-1=15-9x+1-2x\\ \Leftrightarrow26x+11x=16+1\\ \Leftrightarrow37x=17\\ \Leftrightarrow x=\dfrac{17}{37}\\ \)

Vậy phương trình có nghiệm \(x=\dfrac{17}{37}\)

15 tháng 4 2018

a) \(\left(2x+1\right)^2-\left(x+2\right)^2>0\)

\(\Leftrightarrow\left(2x+1-x-2\right)\left(2x+1+x+2\right)>0\)

\(\Leftrightarrow\left(x-1\right)\left(3x+3\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\\3x+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\\3x+3< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x>-1\end{matrix}\right.\\\left\{{}\begin{matrix}x< 1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)

Vậy tập nghiệm của bất phương trình là x > 1 hoặc x < -1

b) Sửa lại rồi làm câu b nèk\(\dfrac{5x-3x}{5}+\dfrac{3x+1}{4}>\dfrac{x\left(2x+1\right)}{2}-\dfrac{3}{2}\)

\(\Leftrightarrow4\left(5x-3x\right)+5\left(3x+1\right)>10\left(x+2x\right)-30\)\(\Leftrightarrow20x-12x+15x+5>10x+20x-30\)\(\Leftrightarrow20x-12x+15x-10x-20x>-30-5\)\(\Leftrightarrow-7x>-35\)

\(\Leftrightarrow x< 5\)

c) \(\dfrac{-1}{2x+3}< 0\)

dễ nhé mình học bài hóa mai kt 15 phút nên ko có time để giúp

a: =>5-x+6=12-8x

=>-x+11=12-8x

=>7x=1

hay x=1/7

b: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)

\(\Leftrightarrow9x+6-3x-1=12x+10\)

=>12x+10=6x+5

=>6x=-5

hay x=-5/6

d: =>(x-2)(x-3)=0

=>x=2 hoặc x=3

1 tháng 5 2018

a) \(\dfrac{\left(x+1\right)^2}{x^2-1}-\dfrac{\left(x-1\right)^2}{x^2-1}=\dfrac{16}{x^2-1}\)

=>\(\left(x+1\right)^2-\left(x-1\right)^2=16\)

=>\(x^2+2x+1-x^2+2x-1=16\)

=>4x=16=>x=4

b)\(\dfrac{12}{x^2-4}-\dfrac{x+1}{x-2}+\dfrac{x+7}{x+2}=0\)

=>\(\dfrac{12}{x^2-4}-\dfrac{\left(x+1\right)\left(x+2\right)}{x^2-4}+\dfrac{\left(x+7\right)\left(x-2\right)}{x^2-4}=0\)

=>\(12-\left(x+1\right)\left(x+2\right)+\left(x+7\right)\left(x-2\right)=0\)

=>\(12-x^2-3x-2+x^2+5x-14=0\)

=>2x-4=0=>2x=4=>x=2

c)\(\dfrac{12}{8+x^3}=1+\dfrac{1}{x+2}\)

=>\(\dfrac{12}{8+x^3}=\dfrac{x^3+8}{x^3+8}+\dfrac{x^2-2x+4}{x^3+8}\)

=>\(12=x^3+8+x^2-2x+4\)

=>\(x^3+x^2-2x=0\)

=>\(x^3-x+x^2-x=0\)

1 tháng 5 2018

c)=>\(x\left(x^2-1\right)+x\left(x-1\right)=0\)

=>\(x\left(x-1\right)\left(x+1\right)+x\left(x-1\right)=0\)

=>\(x\left(x-1\right)\left(x+2\right)=0\)

=>x=?

a) \(15x-3\left(3x-2\right)=45-5\left(2x-5\right)\)

\(\Leftrightarrow15x-9x+6=45-10x+25\)

\(\Leftrightarrow15x-9x+10x=45+25-6\)

\(\Leftrightarrow16x=64\)

\(\Leftrightarrow x=4\)

b) \(x^2-9+4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-3\right)+4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\Leftrightarrow x=3\\x+7=0\Leftrightarrow x=-7\end{matrix}\right.\)

c) \(\dfrac{1}{x-4}+\dfrac{x+2}{x+4}=\dfrac{5x-4}{x^2-16}\)

\(\Leftrightarrow\dfrac{x+4+\left(x+2\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{5x-4}{\left(x-4\right)\left(x+4\right)}\)

\(\Leftrightarrow x+4+x^2-4x+2x-8=5x-4\)

\(\Leftrightarrow x^2+x-4x+2x-5x=-4+8-4\)

\(\Leftrightarrow x^2-6x=0\)

\(\Leftrightarrow x\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-6=0\Leftrightarrow x=6\end{matrix}\right.\)

12 tháng 4 2018

a) 15x - 3(3x - 2) = 45 - 5(2x - 5)

\(\Leftrightarrow\) 15x - 9x + 6 = 45 - 10x + 25

\(\Leftrightarrow\) 6x + 10x = 70 - 6

\(\Leftrightarrow\) 16x = 64

\(\Leftrightarrow\) x = 4

Vậy.......................

b) x2 - 9 + 4(x - 3) = 0

\(\Leftrightarrow\) (x - 3)(x + 3) + 4(x - 3) = 0

\(\Leftrightarrow\) (x - 3)(x + 3 + 4) = 0

\(\Leftrightarrow\) (x - 3)(x + 7) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x+7=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=3\end{matrix}\right.\)

Vậy........................

c) \(\dfrac{1}{x-4}+\dfrac{x+2}{x+4}=\dfrac{5x-4}{x^2-16}\)

\(\Leftrightarrow\) \(\dfrac{1}{x-4}+\dfrac{x+2}{x+4}=\dfrac{5x-4}{\left(x-4\right)\left(x+4\right)}\) (đk: x\(\ne\pm\)4)

\(\Leftrightarrow\) \(\dfrac{x+4}{\left(x+4\right)\left(x-4\right)}+\dfrac{\left(x+2\right)\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}=\dfrac{5x-4}{\left(x+4\right)\left(x-4\right)}\)

\(\Leftrightarrow\) x + 4 + x2 - 4x + 2x - 8 = 5x - 4

\(\Leftrightarrow\) x2 - x - 5x - 4 + 4 = 0

\(\Leftrightarrow\) x2 - 6x = 0

\(\Leftrightarrow\) x(x - 6) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tmđk\right)\\x=6\left(tmđk\right)\end{matrix}\right.\)

Vậy...............

17 tháng 2 2019

a) \(\left(2x-1\right)^2-\left(3x+5\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x-1-3x-5\right)=0\\ \text{​​}\Leftrightarrow\left(2x-1\right)\left(-x-6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=0\\-x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-6\end{matrix}\right.\)

Vậy \(S=\left\{\dfrac{1}{2};-6\right\}\)

b) \(\dfrac{x+5}{4}-\dfrac{2x-3}{3}=\dfrac{2x-1}{12}\)

\(\Leftrightarrow3\left(x+5\right)-4\left(2x-3\right)=2x-1\\ \Leftrightarrow3x+15-8x+12=2x-1\\ \Leftrightarrow-5x+27=2x-1\\ \Leftrightarrow-5x-2x=-1-27\\ \Leftrightarrow-7x=-28\\ \Leftrightarrow x=4\)

Vậy \(S=\left\{4\right\}\)

17 tháng 2 2019

\(c)\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{-4}{1-x^2}\)(ĐKXĐ: \(x\ne\pm1\))

\(\Leftrightarrow\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}-\dfrac{4}{\left(x-1\right)\left(x+1\right)}\\ \dfrac{\left(x+1\right)^2-\left(x-1\right)^2-4}{\left(x-1\right)\left(x+1\right)}=0\\ \Leftrightarrow\dfrac{4x-4}{\left(x-1\right)\left(x+1\right)}=0\\ \Leftrightarrow\dfrac{4\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=0\\ \Leftrightarrow\dfrac{4}{x+1}=0\)

\(\Leftrightarrow4=0\)(vô lý)

Vậy .....

\(d)\dfrac{1}{x+1}+\dfrac{2x-1}{x^3+1}=\dfrac{2}{x^2-x+1}\)(ĐKXĐ: \(x\ne-1\))

\(\Leftrightarrow\dfrac{1}{x+1}+\dfrac{2x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{2}{x^2-x+1}=0\\ \Leftrightarrow\dfrac{x^2-x+1+2x-1-2\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=0\\ \Leftrightarrow\dfrac{x^2-x+2x-2x-2}{\left(x+1\right)\left(x^2-x+1\right)}=0\\ \Leftrightarrow\dfrac{x^2-x-2}{\left(x+1\right)\left(x^2-x+1\right)}=0\\ \Leftrightarrow x^2-x-2=0\\ \Leftrightarrow x^2+x-2x-2=0\\ \Leftrightarrow x\left(x+1\right)-2\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)

Vậy ....

a: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\cdot\left(x^2-2x-3\right)=0\)

=>(7x+10)(x-3)=0

=>x=3 hoặc x=-10/7

b: \(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow13\left(x+3\right)+x^2-9-12x-42=0\)

\(\Leftrightarrow x^2-12x-51+13x+39=0\)

\(\Leftrightarrow x^2+x-12=0\)

=>(x+4)(x-3)=0

=>x=-4

14 tháng 2 2019

6). ĐK x\(\ne\)...

PT \(\Leftrightarrow\dfrac{4}{2x^3+3x^2-8x-12}-\dfrac{1\left(2x+3\right)}{2x^3+3x^2-8x-12}-\dfrac{4\left(x-2\right)}{2x^3+3x^2-8x-12}+\dfrac{1\left(x^2-4\right)}{2x^3+3x^2-8x-12}=0\)(cái này bạn lấy 2x3+3x2-8x-12 chia cho các mẫu khác bằng phương pháp chia hoocner)

\(\Leftrightarrow4-\left(2x+3\right)-4\left(x-2\right)+\left(x^2-4\right)=0\\ \Leftrightarrow x^2-6x+5=0\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)

14 tháng 2 2019

câu 5) nếu mẫu thứ 2 là x2-x+1 thì chắc sẽ làm ra