\(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2017

Câu 1 :

a) \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{2}-5\)

\(\Leftrightarrow\dfrac{5x+2}{6}-\dfrac{16x-2}{6}=\dfrac{12x+6}{6}-\dfrac{30}{6}\)

\(\Leftrightarrow\dfrac{5x+2-16x+2}{6}=\dfrac{12x+6-30}{6}\)

\(\Leftrightarrow\dfrac{-11x+4}{6}=\dfrac{12x-24}{6}\)

\(\Rightarrow-66x+24=72x-144\)

\(\Rightarrow x=\dfrac{28}{23}\)

b) \(\dfrac{x+1}{x-2}+\dfrac{x-1}{x+2}=\dfrac{4x+4}{x^2-4}\)

(ĐKXĐ \(x\ne\pm2\))

\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{4x+4}{x^2-4}\)

\(\Leftrightarrow\dfrac{x^2+3x+2+x^2-3x+2}{x^2-4}=\dfrac{4x+4}{x^2-4}\)

\(\Rightarrow2x^2+4=4x+4\)

\(\Leftrightarrow2x^2-4x=0\)

\(\Leftrightarrow2x\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\left(TMĐK\right)\\x=2\left(KTMĐK\right)\end{matrix}\right.\)

Vậy \(S=\left\{0\right\}\)

c) \(\left|x+2016\right|=2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2016=2x\left(x+2016\ge0\right)\\x+2016=-2x\left(x+2016< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2016\left(x\ge-2016\right)\left(TMĐK\right)\\x=-672\left(x< -2016\right)\left(KTMĐK\right)\end{matrix}\right.\)

Vậy \(S=\left\{2016\right\}\)

25 tháng 4 2017

Câu 4 :

Vì đáy của hình lăng trụ đứng là tam giác vuông.

Áp dụng định lý Pytago vào tam giác vuông, ta được cạnh còn lại bằng :

\(x^2=5^2+12^2\rightarrow x=13\left(cm\right)\)

Diện tích xung quanh của hình lăng trụ đó là :

\(S_{xq}=2p\cdot h=\left(5+12+13\right)\cdot8=240\left(cm^2\right)\)

Thể tích hình lăng trụ đó là :

\(V=S\cdot h=\dfrac{1}{2}\cdot5\cdot12\cdot8=240\left(cm^3\right)\)

19 tháng 4 2018

3) 9h30phút-30phút=9h

Gọi x(km) là quãng đường từ A đến B (ĐK X>0)

Thời gian xe đi từ A đến B là \(\dfrac{X}{15}\)(h)

Thời gian xe đi từ B đến A là \(\dfrac{X}{12}\)(h)

Theo đề bài ta có phương trình :

\(\dfrac{x}{15}+\dfrac{x}{12}=9\)

Giải pt:\(\dfrac{X}{15}+\dfrac{x}{12}=9\Leftrightarrow\dfrac{4x}{60}+\dfrac{5x}{60}=\dfrac{540}{60}\Rightarrow4x+5x=540\Leftrightarrow9x=540\Leftrightarrow x=60\)

Vậy quãng đường từ A đến B là 60 km

19 tháng 4 2018

\(15x-3\left(3x-2\right)=45-5\left(2x-5\right)\Leftrightarrow15x-9x+6=45-10x+25\Leftrightarrow16x=64\Leftrightarrow x=4\)

14 tháng 3 2017

  1  14-3x=-2+5x

<=>-3x-5x = -2-14

<=> -8x        =-16

<=>        x    =-16/-8=2

14 tháng 3 2017

mấy bạn ơi...các phương trình trên nó bị lặp lại nhak....ptrinh day ni:

a)\(14-3x=-2+5x\)

b) \(3\times\left(5x+2\right)-x\times\left(5x+2\right)=0\)

c) \(\frac{2x}{3}+\frac{3x-1}{6}=4-\frac{x}{3}\)

d) \(\frac{3-x}{x-2}+\frac{x+1}{x+2}=\frac{3x}{x^2-4}\)

Câu 1: (3,0 điểm). Giải các phương trình:a) \(3x+5=2x+2\).b) \(\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4}{x+1}+\frac{3}{x-2}\).c) \(\left|x-3\right|+1=2x-7\).Câu 2: (2,0 điểm). a) Giải bất phương trình và biểu diễn tập nghiệm trên trục số: \(5x-15>x+15\).b) Giải bất phương trình \(\frac{8-4x}{3}>\frac{12-x}{5}\). Từ đó tìm số nguyên x lớn nhất thỏa mãn bất phương trình trên.Câu 3: (1,0 điểm). Một người...
Đọc tiếp

Câu 1: (3,0 điểm). Giải các phương trình:

a) \(3x+5=2x+2\).

b) \(\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4}{x+1}+\frac{3}{x-2}\).

c) \(\left|x-3\right|+1=2x-7\).

Câu 2: (2,0 điểm). 

a) Giải bất phương trình và biểu diễn tập nghiệm trên trục số: \(5x-15>x+15\).

b) Giải bất phương trình \(\frac{8-4x}{3}>\frac{12-x}{5}\). Từ đó tìm số nguyên x lớn nhất thỏa mãn bất phương trình trên.

Câu 3: (1,0 điểm). Một người đi xe máy từ A đến B với vận tốc 60 km/h, rồi quay trở về A với vận tốc 50 km/h. Biết rằng thời gian đi từ A đến B ít hơn thời gian lúc về là 48 phut. Tính quãng đường từ A đến B.

Câu 4: (3,0 điểm). Cho \(\Delta ABC\)nhọn, các đường cao AD, BE, CF cắt nhau tại H.

a) Chứng minh rằng \(\Delta AEB~\Delta AFC\). Từ đó suy ra: \(AF.AB=AE.AC\).

b) Chứng minh: \(HE.HB=HF.HC\)\(\widehat{BEF}=\widehat{BCF}\).

c) Chứng minh: \(\frac{AF}{FB}.\frac{BD}{DC}.\frac{CE}{EA}=1\).

Câu 5: (1,0 điểm).

a) Chứng minh: Với mọi a, b ta có: \(a^2+b^2+1\ge ab+a+b\).

b) Giải phương trình: \(\left(3x+4\right)\left(x+1\right)\left(6x+7\right)^2=6\).

 

5
8 tháng 5 2021

Câu 1: (3,0 điểm). Giải các phương trình:

a) \(3x+5=2x+2\).

\(\Leftrightarrow3x-2x=2-5\).

\(\Leftrightarrow x=-3\).

Vậy phương trình có tập nghiệm: \(S=\left\{-3\right\}\).

b) \(\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4}{x+1}+\frac{3}{x-2}\left(ĐKXĐ:x\ne-1;x\ne2\right)\).

\(\Leftrightarrow\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}\).

\(\Rightarrow x-5=4x-8+3x+3\).

\(\Leftrightarrow x-4x-3x=-8+3+5\).

\(\Leftrightarrow-6x=0\).

\(\Leftrightarrow x=0\)(thỏa mãn ĐKXĐ).

Vậy phương trình có tập nghiệm: \(S=\left\{0\right\}\).

8 tháng 5 2021

c) \(\left|x-3\right|+1=2x-7\)

- Xét \(x-3\ge0\Leftrightarrow x\ge3\). Do đó \(\left|x-3\right|=x-3\). Phương trình trở thành:

\(x-3+1=2x-7\).

\(\Leftrightarrow x-2=2x-7\).

\(\Leftrightarrow x-2x=-7+2\).

\(\Leftrightarrow-x=-5\).

\(\Leftrightarrow x=5\)(thỏa mãn).

- Xét \(x-3< 0\Leftrightarrow x< 3\)Do đó \(\left|x-3\right|=3-x\). Phương trình trở thành:

\(3-x+1=2x-7\).

\(\Leftrightarrow4-x=2x-7\).

\(-x-2x=-7-4\).

\(\Leftrightarrow-3x=-11\).

\(\Leftrightarrow x=\frac{-11}{-3}=\frac{11}{3}\)(loại).

Vậy phương trình có tập nghiệm: \(S=\left\{5\right\}\).

Câu 2: (2,0 điểm). 

a) \(5x-5>x+15\).

\(\Leftrightarrow5x-x>15+5\).

\(\Leftrightarrow4x>20\).

\(\Leftrightarrow x>5\).

Vậy bất phương trình có tập nghiệm: \(\left\{x|x>5\right\}\).

b) \(\frac{8-4x}{3}>\frac{12-x}{5}\).

\(\Leftrightarrow\frac{5\left(8-4x\right)}{15}>\frac{3\left(12-x\right)}{15}\).

\(\Leftrightarrow40-20x>36-3x\).

\(\Leftrightarrow-20x+3x>36-40\).

\(\Leftrightarrow-17x>-4\).

\(\Leftrightarrow x< \frac{4}{17}\)\(\Leftrightarrow x< 0\frac{4}{17}\).

\(\Rightarrow\)Số nguyên x lớn nhất thỏa mãn bất phương trình trên là: \(x=0\).

Vậy \(x=0\).

19 tháng 3 2018

Câu 3:

Gọi quãng đường AB là x ( km, x>0)

Thời gian lúc đi là: \(\dfrac{x}{30}h\)

Thời gian lúc về là: \(\dfrac{x}{40}h\)

45' = \(\dfrac{3}{4}h\)

Theo đề ra ta có pt:

\(\dfrac{x}{30}-\dfrac{3}{4}=\dfrac{x}{40}\)

\(\Leftrightarrow4x-90=3x\)

\(\Leftrightarrow x=90\) ( nhận)

Vậy quẵng đường AB dài 90 km

19 tháng 3 2018

\(\left(m-2\right)x+3=0\)

a. Để pt trên là pt bậc nhất 1 ẩn thì \(m-2\ne0\)=> m khác 2

b. Với m = 5 ta được:

\(\left(5-2\right)x+3=0\)

\(\Leftrightarrow3x+3=0\)

\(\Leftrightarrow x=-1\)

Vậy m = 0 thì nghiệm của pt là x = -1

12 tháng 4 2018

c) \(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)

\(\Leftrightarrow2\left(x-2\right)-\left(x+1\right)=3x-11\)

\(\Leftrightarrow2x-4-x-1=3x-11\)

\(\Leftrightarrow2x-x-3x=-11+1+4\)

\(\Leftrightarrow-2x=-6\)

\(\Leftrightarrow x=3\)

12 tháng 4 2018

Gọi quãng đường người đi xe máy từ A đến B là x(km)(x>0)

thời gian người đi xe máy từ A đến B là \(\dfrac{x}{40}h\)

thời gian người đi xe máy trở về là\(\dfrac{x}{30}h\)

Theo đầu bài ta có phương trình

Đổi 45p=\(\dfrac{3}{4}h\)

\(\dfrac{x}{30}-\dfrac{x}{40}=\dfrac{3}{4}\)

\(\Leftrightarrow40x-30x=90\)

\(\Leftrightarrow10x=90\)

\(\Leftrightarrow x=9\left(tm\right)\)

Vậy quãng đường AB dài 9(km)

20 tháng 5 2018

1.

|x-9|=2x+5

x<9; x-9=-2x-5

3x=4=>x=4/3(n)

x≥9; x-9=2x+5=> x=-14(l)

2.a

A=2x-5≥0<=>2x≥5; x≥5/2

21 tháng 5 2018

1. a) / x - 9 / = 2x + 5

Do : / x - 9 / ≥ 0 ∀x

⇒2x + 5 ≥ 0

⇔ x ≥ \(\dfrac{-5}{2}\)

Bình phương cả hai vế của phương trình , ta được :

( x - 9)2 = ( 2x + 5)2

⇔ ( x - 9)2 - ( 2x + 5)2 = 0

⇔ ( x - 9 - 2x - 5)( x - 9 + 2x + 5) = 0

⇔ ( - x - 14)( 3x - 4) = 0

⇔ x = - 14 ( KTM) hoặc : x = \(\dfrac{4}{3}\) ( TM)

KL....

b) Mạn phép làm luôn , ko chép lại đề :

\(\dfrac{5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{4\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{x-5}{\left(x-3\right)\left(x+3\right)}\) ( x # 3 ; x # - 3)

⇔ 5x + 15 + 4x - 12 = x - 5

⇔ 9x + 3 = x - 5

⇔ 8x = - 8

⇔ x = -1 ( TM)

KL....

14 tháng 3 2017

câu 3)

\(x^2-4x+y^2-8y+20=0\\ \Leftrightarrow\left(x^2-4x+4\right)+\left(y^2-8y+16\right)=0\\ \Leftrightarrow\left(x-2\right)^2+\left(y-4\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y-4=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

(chỗ trên giải thích tí: (x-2)^2 và (y-4)^2 >=0 với mọi x, y nên để (x-2)^2 +(y-4)^2=0 thì (x-2)^2=0 và (y-4)^2=0

14 tháng 3 2017

câu 1 A) 3x-6=5x-6
=2x=0 >x=0
b) x2 +x -x+2=3
=x2=1 >x=1
c )delta=72 -4.12=1
x1=72 -2.1/2.1 =47/2
x2=72+2.1/2.1=51/2
câu 2:sau 30' xe may di được quảng đường

=s=40.0,5=20km
phương trình của xe máy

x=20+40t
phương trình oto

x=110+-50t
thời điểm hai xe gặp nhau

20+40t=110-50t

90t=90 >t=1 (h)

28 tháng 4 2018

Bài 1.

a) (3x - 2)(4x + 5) = 0

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\4x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{5}{4}\end{matrix}\right.\)

Vậy........................

b) \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\left(x\ne0;x\ne-1\right)\)

\(\Leftrightarrow\) \(\dfrac{x\left(x+3\right)}{x\left(x+1\right)}+\dfrac{\left(x-2\right)\left(x+1\right)}{x\left(x+1\right)}=\dfrac{2x\left(x+1\right)}{x\left(x+1\right)}\)

\(\Leftrightarrow\) x2 + 3x + x2 + x - 2x - 2 = 2x2 + 2x

\(\Leftrightarrow\) 2x2 + 2x - 2x2 - 2x = 2

\(\Leftrightarrow\) 0 = 2 (vô lí)

Vậy phương trinh vô no

Bài 2

a) 5x - 2 < 4x + 6

\(\Leftrightarrow\) 5x - 4x < 2 + 6

\(\Leftrightarrow\) x < 8

Vậy....................

b) \(\dfrac{x-3}{5}+1>2x-5\)

\(\Leftrightarrow\) \(\dfrac{x-3+5}{5}>\dfrac{5\left(2x+5\right)}{5}\)

\(\Leftrightarrow\) x + 2 > 10x + 25

\(\Leftrightarrow\) -25 + 2 > 10x - x

\(\Leftrightarrow\) -23 > 9x

\(\Leftrightarrow\) x < \(-\dfrac{23}{9}\)

Vậy.............................

Bài 3

Goi x(km) là quãng đường AB (x>0)

Thời gian ô tô đi đến tỉnh B là: \(\dfrac{x}{40}\)(giờ)

Thời gian ô tô về tỉnh A là: \(\dfrac{x}{30}\)(giờ)

Do cả đi lẫn về mất 10h30' = \(\dfrac{21}{2}\)h nên ta có phương trình:

\(\dfrac{x}{40}+\dfrac{x}{30}=\dfrac{21}{2}\)

\(\Leftrightarrow\) \(\dfrac{3x}{120}+\dfrac{4x}{120}=\dfrac{1260}{120}\)

\(\Leftrightarrow\) 3x + 4x = 1260

\(\Leftrightarrow\) 7x = 1260

\(\Leftrightarrow\) x = 180 (tm)

Vậy quãng đường dài 180 km

28 tháng 4 2018

Bài 4.

A B D C H

a) Trong \(\Delta\)ABC có AD là p/giác của góc A

\(\Rightarrow\) \(\dfrac{BD}{CD}=\dfrac{AB}{AC}\) = \(\dfrac{8}{6}=\dfrac{4}{3}\)

b) Xét \(\Delta\) AHB và \(\Delta\) CAB có:

\(\widehat{AHB}=\widehat{CAB}\left(=90^o\right)\)

\(\widehat{B}\) là góc chung

\(\Rightarrow\)\(\Delta\)AHB đồng dạng với \(\Delta\)CAB (1)

Xét \(\Delta\) CHA và \(\Delta\)CAB có:

\(\widehat{AHC}=\widehat{CAB}\left(=90^o\right)\)

\(\widehat{C}\) là góc chung

\(\Rightarrow\) \(\Delta\) CHA đồng dạng vs \(\Delta\)CAB (2)

Từ (1) và (2)

\(\Rightarrow\) \(\Delta\)CHA đồng dạng vs \(\Delta\)AHB

c) Trong \(\Delta\)ABC vuông tại A có:

BC2 = AB2 + AC2

= 82 + 62

= 100

\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)

\(\Delta\) ABH đồng dạng vs \(\Delta\)CAB (cmt)

\(\Rightarrow\) \(\dfrac{AB}{AC}=\dfrac{BH}{AB}\)

\(\Rightarrow\) BH = \(\dfrac{AB^2}{AC}\) = \(\dfrac{8^2}{6}\) = \(\dfrac{32}{3}\)

\(\Delta\)CHA đồng dạng vs \(\Delta\)CAB

\(\Rightarrow\) \(\dfrac{CH}{AC}=\dfrac{AC}{BC}\)

\(\Rightarrow\) CH = \(\dfrac{AC^2}{BC}=\dfrac{6^2}{10}=\dfrac{18}{5}\)

Ta có:

\(\dfrac{S_{AHB}}{S_{CHA}}=\dfrac{\dfrac{1}{2}AH.BH}{\dfrac{1}{2}AH.CH}=\dfrac{BH}{CH}=\dfrac{\dfrac{32}{3}}{\dfrac{18}{5}}=\dfrac{80}{27}\)