K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2016

\(1.\)

Giá trị tuyệt đối của một số hữu tỉ x, kí hiệu là |x|, được xác định như sau:

 

20 tháng 12 2016

\(2.\)

+ Nhân hai lũy thừa cùng cơ số :

\(a^m.a^n=a^{m+n}\)

+ Chia hai lũy thừa cùng cơ số :

\(a^m:a^n=a^{m-n}\left(a\ne0;m\ge n\right)\)

+ Lũy thừa của lũy thừa :

\(\left(x^m\right)^n=x^{m.n}\)

+ Lũy thừa của một tích :

\(\left(x.y\right)^n=x^n.y^n\)

+ Lũy thừa của một thương :

\(\left(\frac{x}{y}\right)^n=\frac{x^n}{y^n}\left(y\ne0\right)\)

20 tháng 12 2016

5/

- Nếu đại lượng y liên hệ với đại lượng x theo công thức y=xk ( với k là hằng số khác 0 ) thì ta nói y tỉ lệ thuận với x theo hệ số tỉ lệ là k .

* Tính chất của hai đại lượng tỉ lệ thuận là :

- Nếu hai đại lượng tỉ lệ thuận với nhau thì :

  • Tỉ số hai giá trị tương ứng của chúng luôn không đổi và bằng hệ số tỉ lệ .
  • Tỉ số hai giá trị bất kì của đại lượng này bằng tỉ số hai giá trị tương ứng của đại lượng kia .
20 tháng 12 2016

 

* Tính chất của hai đại lượng tỉ lệ nghịch là :

- Nếu hai đại lượng tỉ lệ nghịch với nhau thì :

  • Tích hai giá trị tương ứng của chúng luôn không đổi và bằng hệ số tỉ lệ .
  • Tỉ số hai giá trị bất kì của đại lượng này bằng nghịch đảo tỉ số hai giá trị tương ứng của đại lượng kia .
3) giá trị tuyệt đối của số hữu tỉ x được xác định ntn4) định nghĩa lũy thừa với số mũ tự nhiên của một số hữu tỉ5) viết các công thức;-nhân hai lũy thừa cùng cơ số-chia hai lũy thừa cùng cơ số khác 0- lũy thừa của một lũy thừa-lũy thừa của một tích- lũy thừa của một thương6) thế nào là tỉ số của hai số hữu tỉ? cho ví dụ7) tỉ lệ thức là j? Phát biểu tính chất cơ...
Đọc tiếp

3) giá trị tuyệt đối của số hữu tỉ x được xác định ntn

4) định nghĩa lũy thừa với số mũ tự nhiên của một số hữu tỉ

5) viết các công thức;

-nhân hai lũy thừa cùng cơ số

-chia hai lũy thừa cùng cơ số khác 0

- lũy thừa của một lũy thừa

-lũy thừa của một tích

- lũy thừa của một thương

6) thế nào là tỉ số của hai số hữu tỉ? cho ví dụ

7) tỉ lệ thức là j? Phát biểu tính chất cơ bản của tỉ lệ thức? Viết công thức thể hiện tính chất của dãy tỉ số bằng nhau

8) thế nào là số vô tỉ? cho ví dụ (dễ nhé)

9) thế nào là số thực? cho ví dụ

10) định nghĩa căn bậc 2 của một số ko âm

 

(bao nhiêu câu tương ứng với bấy nhiu like, nhưng chỉ người đầu tiên thôi, mk cần trước 7h15 nhé, thanks nhìu

0
1. nêu 3 cách viết số hữu tỉ -\(\frac{3}{5}\) và biểu diễn số hữu ỉ đó trên trục số.2. Thế nào là số hữu tỉ dương, hữu tỉ âm? Số hữu tỉ naofko là số hữu tỉ dương cũng ko phải là số hữu tỉ âm?3. Gía trị tuyệt đối của ssoos hữu tỉ x được xác định như thế nào/4. Định nghĩ lũy thừa với số mũ tự nhiên của một số hữu tỉ.5. Viết các công thức: -Nhân hai lũy thừa cùng...
Đọc tiếp

1. nêu 3 cách viết số hữu tỉ -\(\frac{3}{5}\) và biểu diễn số hữu ỉ đó trên trục số.

2. Thế nào là số hữu tỉ dương, hữu tỉ âm?

Số hữu tỉ naofko là số hữu tỉ dương cũng ko phải là số hữu tỉ âm?

3. Gía trị tuyệt đối của ssoos hữu tỉ x được xác định như thế nào/

4. Định nghĩ lũy thừa với số mũ tự nhiên của một số hữu tỉ.

5. Viết các công thức:

-Nhân hai lũy thừa cùng cơ số.

-Chia hai lũy thừa cung cơ số khác 0

- Lũy thừa của một lũy thừa

- Lũy thừa của một tích

- Lũy thừa của một thương

6. thế nào là tỉ số của 2 số hữu tỉ? Cho ví dụ

7. tỉ lệ thức là gì? Phát biểu tình chất cơ bản của tỉ lệ thức. Viết công thức thể hiện tính chất của dãy tỉ số bằng nhau.

8. thế nào là số vô tỉ ? Cho Ví dụ

9. Thế nào là số thực? Trục số thực?

10. Đinh nghĩa căn bậc hai của một số không âm.

 

7
14 tháng 11 2016

1) 3 CÁCH VIẾT: \(\frac{3}{-5};\frac{-3}{5};-\frac{3}{5}\)

2) - Số hữu tỉ lớn hơn 0 là số hữu tỉ dương.

- Số hữu tỉ nhỏ hơn 0 là số hữu tỉ âm.

- Số hữu tỉ 0 là số hữu tỉ ko âm cx ko dương.

3) Gíá trị tuyệt đối của một số hữu tỉ x là khoảng cách từ x đến điểm 0 trên trục số.

4) Lũy thừa bậc n của của một số hữu tỉ là tích của n thừa số bằng nhau

5) Nhân hai lũy thừa cùng cơ số : \(a^n.a^m=a^{n+m}\)

Chia hai lũy thừa cùng cơ số : \(a^n:a^m=a^{n-m}\left(n\ge m,a\ne0\right)\)

Lũy thừa của lũy thừa : \(\left(a^n\right)^m=a^{n.m}\)

Lũy thừa của một thương: \(\left(\frac{a}{b}\right)^n=\frac{a^n}{b^n}\left(b\ne0\right)\)

6) Tỉ số của hai số hữu tỉ là thương của phép chia a cho b.

VD : \(\frac{8}{2}\) = 4

7) Tỉ lệ thức là đẳng thức của hai tỉ số \(\frac{a}{b}=\frac{c}{d}\) ( b,c là trung tỉ , a,d là ngoại tỉ)

t/c : ad =bc=\(\frac{a}{b}=\frac{c}{d}\)

\(ad=bc=\frac{b}{a}=\frac{d}{c}\)

 

\(ad=bc=\frac{b}{d}=\frac{a}{c}\)

 

\(ad=bc=\frac{d}{b}=\frac{c}{a}\)

T/c của dãy tỉ số bằng nhau;\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{b+d}=\frac{a-c}{b-d}\)

\(\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\frac{a+c+e}{b+d+f}=\frac{a-c-e}{b-d-f}=\frac{a-c+e}{b-d+f}\)

8) Số vô tỉ là số thập phân vô hạn ko tuần hoàn

vd : \(\sqrt{2}\),\(\sqrt{5}\),\(\sqrt{7}\),.................................

9) Số hữu tỉ và số vô tỉ đc gọi chung là số thực.

Trục số thực là trục số biểu diễn các số thực

10) Căn bậc hai của một số a ko âm là số x sao cho \(^{x^2}\) =a

 

 

 

28 tháng 10 2016

1/ \(\frac{3}{5}=\frac{6}{10}=\frac{9}{15}=\frac{12}{20}\)

2/ Số hữu tỉ âm là các số khi biểu diễn trên trục số nằm bên trái hoặc bên dưới số 0; số hữu tỉ dương là số khi biểu diễn trên trục số nằm bên phải hoặc bên trên số 0.

số 0 không phải là số hữu tỉ âm cũng không phải là số hữu tỉ dương

3/ giá trị tuyệt đối của số hữu tỉ x được bỏ dấu âm

4/Lũy thừa bậc n của số hữu tỉ x, kí hiệu xn, là tích của n thừa số x

5/nhân 2 luỹ thừa cùng cơ số: \(2^2.2^3\)

chia 2 luỹ thừa cùng cơ số:\(2^2:2^3\)

luỹ thừa của 1 luỹ thừa:\(\left(2^2\right)^3\)

luỹ thừa của 1 tích: \(5.5=5^2\)

luỹ thừa của 1 thương:\(25:5=5^1\)

1 Nêu ba cách viết của số hữu tỉ -3/5 và biểu diễn số hữu tỉ đó trên trục số.2 Thế nào là số hữu tỉ dương, số hữu tỉ âm? Số hữu tỉ nào không là số hữu tỉ dương, số hữu tỉ âm ?3 Giá trị tuyệt đối của số hữu tỉ x được xác định như thế nào ?4 Định nghĩa lũy thừa với số mũ tự nhiên của một số hữu tỉ .5 Viết các công thức:- Nhân hai lũy thừa cùng cơ số .-Chia...
Đọc tiếp

1 Nêu ba cách viết của số hữu tỉ -3/5 và biểu diễn số hữu tỉ đó trên trục số.

2 Thế nào là số hữu tỉ dương, số hữu tỉ âm? Số hữu tỉ nào không là số hữu tỉ dương, số hữu tỉ âm ?

3 Giá trị tuyệt đối của số hữu tỉ x được xác định như thế nào ?

4 Định nghĩa lũy thừa với số mũ tự nhiên của một số hữu tỉ .

5 Viết các công thức:

- Nhân hai lũy thừa cùng cơ số .

-Chia hai lũy thừa cùng cơ số khác 0.

-lũy thừa của một lũy thừa

- Lũy thừa của một tích

- Lũy thừa của một thương

6 Thế nào là tỉ số của một số hữu tỉ? Cho ví dụ?

7 Tỉ lệ thức là gì? Phát biểu tính chất cơ bản của tỉ lệ thức. Viết công thức thể hiện tính chất của dãy tỉ số bằng nhau.

8 Thể nào là số vô tỉ? Cho ví dụ.

9 Thế nào là số thực? Trục số thực ?

10 Định nghĩa căn bậc hai của một số không âm ?

 

2
22 tháng 11 2016

1. 3 cách viết là: -0,6 ; -6/10 ; -9/15 . (Cậu tự biểu diễn nhé !)
2. Số hữu tỉ dương là những số hữu tỉ lớn hơn 0. Số hữu tỉ âm là những số hữu tỉ nhỏ hơn 0. Số 0 không phải là số hữu tỉ dương và cũng không phải là số hữu tỉ âm.
3. Gía trị tuyệt đối của 1 số hữu tỉ x, kí hiệu IxI là khoảng cách từ điểm x đến điểm 0 trên trục số.
4. Lũy thừa bật n của số hữu tỉ x, kí hiệu là x mũ n, là tích của n thừa số x, n là một số tự nhiên lớn hơn 1. Vd: xn = x.x...x (x thuộc Q. n thuộc N. n > 1)
5. Nhân 2 lũy thừa cùng cơ số: xm . xn = xm+n
Chia 2 lũy thừa cùng cơ số khác 0: xm : xn = xm-n (x khác 0. m > hoặc = n)
Lũy thừa của một lũy thừa: (xm)n = xm.n)
Lũy Thừa của một tích: (x.y)n = xn . yn
Lũy thừa của một thương: (x/y)n = xn/yn .
6. Thương của phép chia số hữu tỉ x cho số hữu tỉ y (y khác 0) gọi là tỉ số của hai số x và y, kí hiệu là x/y hay x:y . Vd: tỉ số của 2 số -5,12 và 10,25 được viết là -5,12/10,25 hay -5,12:10,25.
7. Tỉ lệ thức là đẳng thức của 2 tỉ số a/b = c/d hay a:b = c:d . Từ tỉ lệ thức a/b = c/d ta suy ra a/b=c/d=a+b/c+d=a-c/b-d, với b khác +- d . Từ dãy tỉ số bằng nhau a/b=c/d/e/f ta suy ra: a/b = c/d = e/f = a+c+e/b+d+f = a-c+e/b-d+f, với giả thiết các số đều có nghĩa.
8. Các số viết được dưới dạng số thập phân vô hạn không tuần hoàn được gọi là số vô tỉ. Vd: Số\(\) pi = 3,45557532323525970,... 0,54455552244178 là các số vô tỉ.
9. Số hữu tỉ và số vô tỉ gọi chung là số thực.
Mỗi điểm trên trục số đều biểu diễn một số thực. Vì thế trục số còn gọi là trục số thực. Tập hợp các số thực lấp đầy trục số.
10. Căn bậc 2 của một số a không âm là số x sao cho x2 = a .
. Cái này trong sách có mà bạn. Chúc bạn học tốt nha !
 

22 tháng 11 2016

Sao mà lắm thế? Cứ như đề cương í!

Số hữu tỉ nào không là số hữu tỉ âm và cũng không là số hữu tỉ dương?Giá trị tuyệt đối của một số hữu tỉ x được xác định như thế nào?Định nghĩa lũy thừa với số mũ tự nhiên của một số hữu tỉ. Viết công thức.Nêu công thứcNhân hai lũy thừa cùng cơ số.Chia hai lũy thừa cùng cơ số khác 0.Lũy thừa của một lũy thừa.Lũy thừa của một tích.Lũy thừa của một thương.Thế...
Đọc tiếp

Số hữu tỉ nào không là số hữu tỉ âm và cũng không là số hữu tỉ dương?

  1. Giá trị tuyệt đối của một số hữu tỉ x được xác định như thế nào?
  2. Định nghĩa lũy thừa với số mũ tự nhiên của một số hữu tỉ. Viết công thức.
  3. Nêu công thức
  • Nhân hai lũy thừa cùng cơ số.
  • Chia hai lũy thừa cùng cơ số khác 0.
  • Lũy thừa của một lũy thừa.
  • Lũy thừa của một tích.
  • Lũy thừa của một thương.
  1. Thế nào là tỉ số của hai số hữu tỉ? Cho ví dụ.
  2. Tỉ lệ thức là gì? Phát biểu hai tính chất của tỉ lệ thức. Nêu tính chất của dãy tỉ số bằng nhau.
  3. Thế nào là số vô tỉ? Cho ví dụ. Kí hiệu tập hợp các số vô tỉ.
  4. Thế nào là số thực? Cho ví dụ. Kí hiệu tập hợp các số thực.
  5. Định nghĩa căn bậc hai của một số không âm. Tính √9; √0;√(-3)2
0
27 tháng 10 2016

1) Tỉ lệ thức là đẳng thức của hai tỉ số : \(\frac{a}{b}=\frac{c}{d}\)

Tính chất 1: Nếu \frac{a}{b}=\frac{c}{d} thì a.d = b.c

Tính chất 2: Nếu a.d = b.c , a, b, c,d ≠ 0 thì ta có các Tỉ lệ thức :

\frac{a}{b}=\frac{c}{d} ; \frac{a}{c}=\frac{b}{d} ; \frac{d}{b}=\frac{c}{a} ; \frac{d}{c}=\frac{b}{a}

2) Tập hợp các số viết được dưới dạng số thập phân vô hạn KHÔNG tuần hoàn. Và kí hiệu là I.

VD: 0,1010010001000010000010000001...
Số {\sqrt  {2}} = 1,414213...
Số \pi =3,141592653589793...\,
3)
Tập hợp các số hữu tỉ và vô tỉ, kí hiệu là R.
Trục số thực là mỗi số thực được biểu diễn trên trục số
4) căn bậc hai của một số không âm a là một số x sao cho x2 = a
27 tháng 10 2016

tỉ lệ thức là 1 đẳng thức

số vô tỉ là số thập phân vô hạn không tuần hoàn vd:1,4582176...

số thực gồm số hữu tỉ và số vô tỉ

căn bậc hai của 1 số không âm là x sao cho x2 = a

còn lại tự làm

29 tháng 11 2017

1) Viết công thức:

- Nhân chia hai lũy thừa cùng cơ số.

xm . xn = xm+n

- Lũy thừa của một lũy thừa.

xm : xn = xm-n ( n \(\ne\)0 , m \(\ge\)n)

- Lũy thừa của một tích.

( x . y )n = xn . yn

- Lũy thừa của một thương.

\(\left(\dfrac{x}{y}\right)^n=\dfrac{x^n}{y^n}\)

2) Thế nào là một số hữu tỉ? Cho VD?

Số hữu tỉ là số viết được dưới dạng phân số \(\dfrac{a}{b}\) với a,b \(\in\) Z , b \(\ne\) 0

Mình bận r , có gì bạn k nhớ thì lấy sách ra sẽ có hết bạn ạ

2 tháng 12 2017

Tỉ lệ thức là gì? Phát biểu tính chất cơ bản của tỉ lệ thức. Viết công thức thể hiện tính chất dãy tỉ số bằng nhau.

-Tỉ lệ thức là đẳng thức của hai tỉ số \(\dfrac{a}{b}=\dfrac{c}{d}\)

- Tính chất 1 : Nếu \(\dfrac{a}{b}=\dfrac{c}{d}\)thì ad = bc

- Tính chất 2 : Nếu ad=bc và a,b,c,d \(\ne\)0 thì ta có các tỉ lệ thức :

\(\dfrac{a}{b}=\dfrac{c}{d};\dfrac{a}{c}=\dfrac{b}{d};\dfrac{d}{b}=\dfrac{c}{a};\dfrac{d}{c}=\dfrac{b}{a}\)

- Tính chất của dãy tỉ số bằng nhau :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\left(b\ne d;b\ne-d\right)\)

mở rông :

Từ dãy tỉ số bằng nhau \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3}{f}\)ta suy ra :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{e}{f}=\dfrac{a+c+e}{b+d+f}=\dfrac{a-c+e}{b-d+f}\)

4) Thế nào là số vô tỉ? Cho VD?

Số vô tỉ là số viết được dưới dạng số thập phân không tuần hoàn

VD : \(\sqrt{2}\)

5) Định nghĩa căn bậc hai của số không âm.

Căn bậc hai của một số a không âm là số x sao cho x2 = a

6) Định nghĩa đại lượng tỉ lệ thuận, tỉ lệ nghịch và tính chất của chúng.

* Đại lượng tỉ lệ thuận : Nếu đại lượng y liên hệ với đại lương x theo công thức : y = kx ( với k là hằng số khác 0 ) thì ta nói y tỉ lệ thuận với x theo hệ số tỉ lệ k

- Tính chất : Nếu hai đại lượng tỉ lệ thuận với nhau thì :

. Tỉ số hai giá trị tương ứng của chúng luôn không đổi

. Tỉ số hai giá trị bất kì của đại lượng này bằng tỉ số hai giá trị tương ứng của đại lượng kia

* Đại lương tỉ lệ nghịch : Nếu đại lượng y liên hệ với đại lượng x theo công thức y = \(\dfrac{a}{x}\)hay xy = a ( a là một hằng số khác 0 ) thì ta nói y tỉ lệ nghịch với x theo hệ số tỉ lệ a

- Tính chất : Nếu hai đại lượng tỉ lệ nghịch với nhau thì :

. Tích hai giá trị tương ứng của chung luôn không đổi ( bằng hệ số tỉ lệ )

. Tỉ số hai giá trị bất kì của đại lượng này bằng nghịch đảo của tỉ số hai giá trọ tương ứng của đại lượng kia