Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A= 2 + 22 + 23 + ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).
= 2 x (2 + 1) + 23 x (2 + 1) + ... + 259 x (2 + 1).
= 2 x 3 + 23 x 3 + ... + 259 x 3.
= 3 x ( 2 + 23 + ... + 259).
Vì A = 3 x ( 2 + 23 + ... + 259) nên A chia hết cho 3.
A= (2 +22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260).
= 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).
= 2 x 7 + 24 x 7 + ... + 258 x 7.
= 7 x ( 2 + 24 + ... + 258).
Vì A = 7 x ( 2 + 24 + ... + 258) nên A chia hết cho 7.
A= (2 +22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + (257 + 258 + 259 + 260).
= 2 x (1 + 2 + 22 + 23) + 25 x (1 + 2 + 22 + 23) + ... + 257 x (1 + 2 + 22 + 23).
= 2 x 15 + 25 x 15 + ... + 257 x 15.
= 15 x ( 2 + 24 + ... + 258).
Vì A = 15 x ( 2 + 24 + ... + 258) nên A chia hết cho 15.
Ta có :B = 1 + 3 + 32 + 33 + 34 + 35 + ... + 397 + 398 + 399
= (1 + 3 + 32) + (33 + 34 + 35) + ... + (397 + 398 + 399)
= (1 + 3 + 32) + 33 . (1 + 3 + 32) +...+ 397.(1 + 3 + 32)
= 13 + 33 . 13 + ... + 397.13
= 13.(1 + 33+ ... + 397) \(⋮\)13
Vậy B\(⋮\)13 (đpcm)
Ta có : B = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37+ ... + 396 + 397 + 398 + 399
= (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + ... + (396 + 397 + 398 + 399)
= (1 + 3 + 32 + 33) + 34.(1 + 3 + 32 + 33) + ... + 396.(1 + 3 + 32 + 33)
= 40 + 34 .40 + ... + 396. 40
= 40.(1 + 34 + .. + 396) \(⋮\)40
Vậy B \(⋮\) 40 (đpcm)
a) B=1+3+32+33+...+399
B=(1+3+32)+(33+34+35)+...+(397+398+399)
B=(1+3+32)+33(1+3+32)+...397(1+3+32)
B=13+33.13+...+397.13
B=(1+33+...+97).13
=> b chia hết cho 13
b)B=(1+3+32+33)+...+(396+397+398+399)
B=(1+3+32+33)+34(1+3+32+33)+...+396(1+3+32+33)
B=40+34.40+...+396.40
B=(1+34+...+396).40
=> B hết cho 40
Ok rồi nha:v
1)Có 7x+4y chia hết cho 37 =>7x chia hết cho 37 ; 4y chia hết cho 37 (37 là số nguyên tố)
Vì 7 và 4 không chia hết cho 37 => x và y chia hết cho 37
=> 13x chia hết cho 37 ; 18y chia hết cho 37
=> 13x+18y chia hết cho 37
2) A = 1/2+3/2+3/2^2+...+3/2^2012
=>2A = 1+3+3/2+...+3/2^2011
=>A = 4 - (1/2+3/2^2011)
Lấy B - A là xong
\(a,S=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{19}+3^{20}\right)\\ S=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{18}\left(3+3^2\right)\\ S=\left(3+3^2\right)\left(1+3^2+...+3^{18}\right)=12\left(1+3^2+...+3^{18}\right)⋮12\)
\(b,S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{17}+3^{18}+3^{19}+3^{20}\right)\\ S=\left(3+3^2+3^3+3^4\right)+....+3^{16}\left(3+3^2+3^3+3^4\right)\\ S=\left(3+3^2+3^3+3^4\right)\left(1+...+3^{16}\right)\\ S=120\left(1+...+3^{16}\right)⋮120\)
\(a,S=3+3^2+3^3+...+3^{20}\)
Ta thấy:\(3+3^2=12⋮12\)
\(\Rightarrow S=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{18}\left(3+3^2\right)\\ \Rightarrow S=\left(3+3^2\right)\left(1+3^2+...+1^{18}\right)\\ \Rightarrow S=12.\left(1+3^2+...+3^{18}\right)⋮12\\ \left(đpcm\right)\)
\(b,Ta\) \(thấy:\)\(3+3^2+3^3+3^4=120⋮120\)
\(\Rightarrow S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{17}+3^{18}+3^{19}+3^{20}\right)\\ \Rightarrow S=\left(3+3^2+3^3+3^4\right)+...+3^{16}\left(3+3^2+3^3+3^4\right)\\ \Rightarrow S=\left(3+3^2+3^3+3^4\right)\left(1+...+3^{16}\right)\\ \Rightarrow S=120\left(1+...+3^{16}\right)⋮120\\ \left(đpcm\right)\)
S6=15+17+19+21+...+151+153+155S6=15+17+19+21+...+151+153+155
Số các số hạng là:
(155−15):2+1=71(155−15):2+1=71
Vậy S6=(155+15).712=6035S6=(155+15).712=6035
S7=15+25+35+...+115S7=15+25+35+...+115
Số các số hạng là:
(115−15):10+1=11(115−15):10+1=11
Vậy S7=(115+15).112=715S7=(115+15).112=715
S4=24+25+26+...+125+126S4=24+25+26+...+125+126
Số các số hạng là:
(126−24):1+1=103
a, 444333=111333.4333=111333.64111
333444=111444.3444=111444.81111
suy ra 444333<333444
b,12+22+...+1002=1(2-1)+2(3-1)+...+100(101-1)
=(1.2+2.3+...+100.101)-(1+2+3...+100)
=A-5050
với A=1.2+2.3+...+100.101
3A=1.2.3+2.3.(4-1)+...+100.101.(102-99)
3A=1.2.3+2.3.4+...+100.101.102-(1.2.3+2.3.4+...+99.100.101)
=100.101.102
SUY RA A=100.101.102/3=343400
thay vào ta có:
12+22+...+1002=A-5050=343400-5050=338350
\(3+3^2+3^3+...+3^{2012}\)
\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(=3\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)
\(=40\left(3+...+3^{2009}\right)⋮40\)
\(K=2+2^2+2^3+...+2^{20}\)
\(2K=2^2+2^3+2^4+...+2^{21}\)
\(\Rightarrow K=2K-K=2^{21}-2=2097150⋮93\)
=> K chia hết cho 93
Ta có: 93=31*3
Bạn cm K chia hết cho 31 và 3
Vào Câu hỏi của friend forever II Lê Tiến Đạt