Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Số nguyên dương nhỏ nhất là 11.
Do đó ta có x+4=1x+4=1 ⇒x=1−4=−3⇒x=1−4=−3.
Vậy x=−3x=−3.
b) Số nguyên âm lớn nhất là −1−1.
Do đó ta có 10−x=−110−x=−1 ⇒x=10−(−1)=11⇒x=10−(−1)=11.
Vậy x=11x=11.
Bài 4 :
Ta có : |x+y|≥0|x+y|≥0 với mọi x,yx,y ; |y−2|≥0|y−2|≥0 với mọi yy
⇒|x+y|+2.|y−2|

Vì x,y là hai số nguyên cùng dấu nên (x,y) có dạng (a,b) hoặc ( (-p),(-q) )
- Xét (x,y) = (a,b) : Ta có x + y = |x| + |y| = 10
- Xét (x,y) = ( (-p),(-q) ) : Ta có x + y = - ( |x| + |y| ) = (-10)
Vậy x + y \(\in\)( 10 ; -10 )

Bài 1: ( cho hỏi: b là số âm hay số dương )
Bài 3:
Ta có: 1 < | x - 2 | < 4
=> | x - 2 | = { 2; 3 }
=> | x - 2 | = 2 => \(\orbr{\begin{cases}x-2=2\\x-2=-2\end{cases}}\)=>\(\orbr{\begin{cases}x=4\\x=0\end{cases}}\)
=> | x - 2 | = 3 => \(\orbr{\begin{cases}x-2=3\\x-2=-3\end{cases}}\)=>\(\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)
\(x,y\)là hai số cùng dấu nên \(10=\left|x\right|+\left|y\right|=\left|x+y\right|\)
Suy ra \(x+y=\pm10\).