Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác ABKC có:
\(B\chi\perp AB\) (gt)
\(AC\perp AB\) (gt)
\(\Rightarrow B\chi\text{//}AC\)
\(\Rightarrow\text{Tứ giác ABKC}\) là hình thang
mà \(\widehat{A}=\widehat{B}=\)\(90^0\)
Vậy hình thang ABKC là hình thang vuông
b) Xét ΔABK và ΔCHA có:
\(\widehat{ABK}=\widehat{CHA}=\)\(90^0\)
\(\widehat{BAK}=\widehat{HCA} \) ( cùng phụ với \(\widehat{HAC}\) )
\(\Rightarrow\text{ΔABK}\) \(\sim\)ΔCHA (gg)
\(\Rightarrow\dfrac{AB}{CH}=\dfrac{AK}{CA}\)
\(\Rightarrow AB.CA=AK.CH\)
c) Xét ΔAHB và ΔCHA có:
\(\widehat{AHB}=\widehat{CHA}=\)\(90^0\)
\(\widehat{BAH}=\widehat{HCA}\) ( cùng phụ với \(\widehat{HAC}\) )
\(\Rightarrow\Delta AHB\sim\Delta CHA\left(gg\right)\)
\(\Rightarrow\dfrac{AH}{CH}=\dfrac{BH}{AH}\)
\(\Rightarrow AH.AH=BH.CH\)
\(\Rightarrow AH^2=BH.CH\)
\(\Rightarrow AH^2=9.16\)
\(\Rightarrow AH=12\left(cm\right)\)
Xét \(\Delta AHB\) vuông tại H có:
\(AB^2=BH^2+HA^2\) ( Định lí Pitago)
\(\Rightarrow AB^2=9^2+12^2\)
\(\Rightarrow AB=\sqrt{225=15\left(cm\right)}\)
a: Xet ΔABC và ΔHBA có
góc B chung
góc BAC=góc BHA
=>ΔABC đồg dạng với ΔHBA
b: ΔABC vuông tại A mà AH là đường cao
nên HA^2=HB*HC
c: Xet ΔCAD vuông tại A và ΔCHE vuông tai H co
góc ACD=góc HCE
=>ΔCAD đồng dạng với ΔCHE
=>\(\dfrac{S_{CAD}}{S_{CHE}}=\left(\dfrac{CA}{CH}\right)^2=\left(\dfrac{8}{6,4}\right)^2=\left(\dfrac{5}{4}\right)^2=\dfrac{25}{16}\)
a: Xet ΔABC vuông tại A co AH là đường cao
nên AH^2=HB*HC
b: BC=3,6+6,4=10cm
\(AH=\sqrt{3.6\cdot6.4}=4.8\left(cm\right)\)
\(AB=\sqrt{3.6\cdot10}=6\left(cm\right)\)
=>AC=8cm
a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔAHB\(\sim\)ΔCAB(g-g)
b) Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{BAH}=\widehat{ACH}\left(=90^0-\widehat{ABH}\right)\)
Do đó: ΔAHB\(\sim\)ΔCHA(g-g)
Suy ra: \(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)
hay \(AH^2=HB\cdot HC\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Ta có: ΔAHB\(\sim\)ΔCAB(cmt)
nên \(\dfrac{AH}{CA}=\dfrac{HB}{AB}=\dfrac{AB}{CB}\)
\(\Leftrightarrow\dfrac{AH}{8}=\dfrac{HB}{6}=\dfrac{6}{10}=\dfrac{3}{5}\)
Suy ra: AH=4,8cm; HB=3,6cm
a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
Xét ΔHAC vuông tại H và ΔABC vuông tại A có
góc C chung
=>ΔHAC đồng dạng vơi ΔABC
=>ΔHBA đồng dạng với ΔHAC
b: ΔHBA đồng dạng với ΔHAC
=>HB/HA=HA/HC
=>HA^2=HB*HC
c: AH=căn 9*16=12cm
AB=căn 9*25=15cm
=>AC=20cm