Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: TH1: m=1
Pt sẽ là -(2*1-1)x+1+1=0
=>-x+2=0
=>x=2(loại)
TH2: m<>1
\(\text{Δ}=\left(2m-1\right)^2-4\left(m-1\right)\left(m+1\right)\)
\(=4m^2-4m+1-4m^2+4=-4m+5\)
Để phương trình có hai nghiệm phân biệt thì -4m+5>0
=>m<5/4
Theo đề, ta có hệ:
\(\left\{{}\begin{matrix}x_1-3x_2=0\\x_1+x_2=\dfrac{2m-1}{m-1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x_2=\dfrac{-2m+1}{m-1}\\x_1=3x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-1}{4\left(m-1\right)}\\x_1=\dfrac{6m-3}{4m-4}\end{matrix}\right.\)
x1x2=m+1/m-1
=>\(\dfrac{\left(2m-1\right)\left(6m-3\right)}{16\left(m-1\right)^2}=\dfrac{m+1}{m-1}\)
=>\(\dfrac{\left(2m-1\right)\left(6m-3\right)}{16\left(m-1\right)^2}=\dfrac{16\left(m-1\right)\left(m+1\right)}{16\left(m-1\right)^2}\)
=>\(16m^2-16=12m^2-12m+3\)
=>4m^2+12m-19=0
hay \(x=\dfrac{-3\pm2\sqrt{7}}{2}\)
c: \(\text{Δ}=\left(2m-2\right)^2-12\left(3m-5\right)\)
\(=4m^2-8m+4-36m+60=4m^2-44m+64\)
Để phương trình có hai nghiệm phân biệt thì m^2-11m+16>0
=>\(\left\{{}\begin{matrix}x< \dfrac{11-\sqrt{57}}{2}\\x>\dfrac{11+\sqrt{57}}{2}\end{matrix}\right.\)
Theo đề, ta có hệ:
x1-x2=0 và x1+x2=2m-2/3
=>2x1=(2m-2)/3 và x1=x2
=>x1=x2=m-1/3
x1*x2=3m-5/3
=>\(\dfrac{m^2-2m+1}{9}=\dfrac{3m-5}{3}\)
=>m^2-2m+1=9m-15
=>m^2-11m+16=0
hay \(m\in\varnothing\)
\(\text{Δ}=\left(2m-6\right)^2-4\left(m^2+3m+2\right)\)
\(=4m^2-24m+36-4m^2-12m-8=-36m+28\)
Để phương trình có hai nghiệm thì -36m+28>=0
=>-36m>=-28
hay m<=7/9
Theo đề, ta có:
\(\left(x_1+x_2\right)^2-2x_1x_2=100\)
\(\Leftrightarrow\left(\dfrac{2m-6}{m+1}\right)^2-2\cdot\dfrac{m+2}{m+1}=100\)
\(\Leftrightarrow\dfrac{\left(2m-6\right)^2-2\left(m^2+3m+2\right)}{\left(m+1\right)^2}=100\)
\(\Leftrightarrow4m^2-24m+36-2m^2-6m-4=100\left(m+1\right)^2\)
\(\Leftrightarrow50\left(m+1\right)^2=m^2-15m+16\)
\(\Leftrightarrow50m^2+100m+50-m^2+15m-16=0\)
\(\Leftrightarrow49m^2+115m+34=0\)
\(\text{Δ}=115^2-4\cdot49\cdot34=6561\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{-115-81}{2\cdot49}=-2\left(nhận\right)\\m_2=\dfrac{-115+81}{2\cdot49}=-\dfrac{17}{49}\left(nhận\right)\end{matrix}\right.\)
\(\text{Δ}=\left(2m-2\right)^2-4\left(m^2-3\right)\)
\(=4m^2-8m+4-4m^2+12=-8m+16\)
Để phương trình có hai nghiệm thì -8m+16>=0
=>-8m>=-16
=>m<=2
\(x_1^2\cdot x_2+x_1\cdot x_2^2=0\)
=>\(x_1x_2\left(x_1+x_2\right)=0\)
\(\Leftrightarrow\left(2m-2\right)\left(m^2-3\right)=0\)
hay \(m\in\left\{1;\sqrt{3};-\sqrt{3}\right\}\)
a/ Bạn tự giải
b/ \(\Delta'=\left(m+2\right)^2-\left(m+1\right)=m^2+3m+3=\left(m+\frac{3}{2}\right)^2+\frac{3}{4}>0;\forall m\)
\(\Rightarrow\) Pt luôn có 2 nghiệm pb với mọi m
c/ Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+4\\x_1x_2=m+1\end{matrix}\right.\)
\(x_1\left(1-2x_2\right)+x_2\left(1-2x_1\right)=m^2\)
\(\Leftrightarrow x_1+x_2-4x_1x_2=m^2\)
\(\Leftrightarrow2m+4-4\left(m+1\right)=m^2\)
\(\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)
Đề đúng là \(m^3-3m\) chứ bạn?
\(\Delta'=m^2-m^3-3m\ge0\)
\(\Leftrightarrow m\left(-m^2+m-3\right)\ge0\)
\(\Rightarrow m\le0\) (do \(-m^2+m-3=-\left(m-\frac{1}{2}\right)^2-\frac{11}{4}< 0;\forall m\))
b/ \(x_1^2+x_2^2\ge8\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge8\)
\(\Leftrightarrow4m^2-2m^3+6m\ge8\)
\(\Leftrightarrow m^3-2m^2-3m+4\le0\)
\(\Leftrightarrow\left(m-1\right)\left(m^2-m-4\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}m\le\frac{1-\sqrt{17}}{2}\\1\le m\le\frac{1+\sqrt{17}}{2}\end{matrix}\right.\) \(\Rightarrow m\le\frac{1-\sqrt{17}}{2}\)
Gọi x 0 là một nghiệm của phương trình x 2 - m x + 2 = 0
Suy ra 3 – x0 là một nghiệm của phương trình x 2 + 2 x - m = 0 .
Khi đó, ta có hệ
x 0 2 − m x 0 + 2 = 0 ( 3 − x 0 ) 2 + 2 ( 3 − x 0 ) − m = 0 ⇔ x 0 2 − m x 0 + 2 = 0 ( 1 ) m = x 0 2 − 8 x 0 + 15 ( 2 )
Thay (2) vào (1), ta được: x 0 2 − ( x 0 2 − 8 x 0 + 15 ) x 0 + 2 = 0 ⇔ x 0 = 2 x 0 = 7 ± 3 5 2 cho ta 3 giá trị của m cần tìm.
Đáp án cần chọn là: D
1: TH1: m=0
=>-x-2=0
=>x=-2(loại)
TH2: m<>0
\(\text{Δ}=\left(2m-1\right)^2-4m\left(m-2\right)\)
=4m^2-4m+1-4m^2+8m
=4m+1
Đểphương trình có 2 nghiệm pb thì 4m+1>0
=>m>-1/4
2: TH1: m=1
Pt sẽ là -2x-1=0
=>x=-1/2(nhận)
TH2: m<>1
\(\text{Δ}=\left(-2m\right)^2-4\left(m-1\right)\left(m-2\right)\)
=4m^2-4(m^2-3m+2)
=-4(-3m+2)
=12m-8
Để phương trình có 1 nghiệm thì 12m-8=0
=>m=2/3