K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2016

AC=20cm
BC=21cm
Tick nha 
đỗ thị kim ánh
 

12 tháng 6 2019

27 tháng 1 2021

A C B H

Áp dụng định lý Pytago ta có:

\(AC^2=AH^2+HC^2=12^2+16^2=400\)

\(\Rightarrow AC=20\left(cm\right)\)

Và \(BH^2=AB^2-AH^2=13^2-12^2=25\)

\(\Rightarrow BH=5\left(cm\right)\Rightarrow BC=BH+HC=5+16=21\left(cm\right)\)

Vậy \(\hept{\begin{cases}AC=20\left(cm\right)\\BC=21\left(cm\right)\end{cases}}\)

14 tháng 6 2017

Câu 1:
Xét tam giác ABH vuông tại H, ta có:
   AB2 = AH2 +  HB2 (định lý Py-ta-go)
   202  = AH2 + 162
   400  = AH2 + 256
   AH2 = 400 - 256
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   AC2 = 122  + 52
   AC2 = 144  + 25
   AC2 = 169
   AC  = \(\sqrt{169}\)= 13 (cm)

Vậy AH = 12 cm
       AC = 13 cm

Bài 2:
Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   152  = AH2 + 92
   225  = AH2 + 81
   AH2 = 225 - 81
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHB vuông tại, ta có:
   AB2 = AH2 + HB(định lý Py-ta-go)
   AB2 = 122  + 52
   AB2 = 144  + 25
   AB2 = 169
   AB  = \(\sqrt{169}\)= 13 (cm)

Vậy AB = 13 cm

17 tháng 9 2019

Câu này dễ

AH 12cm

AC13cm

AB13cm

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow AC^2=12^2+16^2=400\)

hay AC=20(cm)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow HB^2=AB^2-AH^2=13^2-12^2=25\)

hay HB=5(cm)

Ta có: HB+HC=BC(H nằm giữa B và C)

nên BC=5+16=21(cm)

Vậy: AC=20cm; BC=21cm

13 tháng 1 2022

???tìm BC mà chị sao lại HB ạ;-;

AH \(\perp\) BC ( gt )

\(\Rightarrow\) Tam giác HAC vuông tại H

\(\Rightarrow\) \(^{AC^2}\) = \(^{AH^2}\) + \(^{HC^2}\)

\(\Rightarrow\) \(^{AC^2}\)\(^{12^2}\) + \(^{16^2}\)

\(\Rightarrow\) \(^{AC^2}\)= 144 + 256

\(\Rightarrow\) \(^{AC^2}\)= 400

\(\Rightarrow\) AC = 20 ( cm )

AH \(\perp\) BC ( gt )

\(\Rightarrow\) Tam giác HAB vuông tại H

\(\Rightarrow\) \(AB^2\) = \(AH^2\) + \(BH^2\)

\(\Rightarrow\) \(BH^2\) = \(AB^2\) - \(AH^2\)

\(\Rightarrow\) \(BH^2\) = \(13^2\) - \(12^2\)

\(\Rightarrow\) \(BH^2\) = 169 - 144

\(\Rightarrow\) \(BH^2\) = 25

\(\Rightarrow\) BH = 5 ( cm )

Có: BH + HC = BC ( Vì H nằm giữa B và C )

\(\Rightarrow\) 5 + 16 = 21 ( cm )

Vậy AC = 20 cm

       BC = 21 cm 

Học tốt

 

 

 

31 tháng 3 2018

Giải bài 60 trang 133 Toán 7 Tập 1 | Giải bài tập Toán 7

Áp dụng định lí Pi-ta-go trong ΔAHC vuông tại H ta có:

AC2 = AH2 + HC2 = 122 + 162 = 144 + 256 = 400

⇒ AC = 20 (cm)

Áp dụng định lí Pi-ta-go trong ΔAHB vuông tại H ta có:

BH2 + AH2 = AB2 ⇒ BH2 = AB2 - AH2 = 132 - 122 = 169 -144 = 25

⇒ BH = 5cm

Do đó BC = BH + HC = 5 + 16 = 21 (cm)

1 tháng 4 2020

CÂU 2

A B C E F K 1 1 2 2

a) Xét tam giác BEC và tam giác CFB có:

BC chung

E1=F1=90 độ(Vì BE vg góc vs AC:CF vg góc vs AB)

Góc B= góc C(Vì tam giác ABC cân tại A)

=>Xét tam giác BEC = tam giác CFB(CH-GN)

1 tháng 4 2020

b) Vì tam giác BEC = tam giác CFB(cm a)

=>\(\widehat{KCB}=\widehat{KBC}\)( Hai góc tứ)

=> Tam giác KBC cân tại K