Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-x^2-2\left(m-1\right)x+2m-1>0\)
\(\Leftrightarrow x^2+2\left(m-1\right)x-2m+1< 0\)
\(f\left(x\right)=x^2+2\left(m-1\right)x-2m+1\)
Yêu cầu bài toán thỏa mãn khi \(f\left(x\right)=0\) có hai nghiệm phân biệt thỏa mãn \(x_1\le0< 1\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2+2m-1>0\\f\left(1\right)\le0\\f\left(0\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2>0\\1+2\left(m-1\right)-2m+1\le0\\-2m+1\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\ge\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow m\ge\dfrac{1}{2}\)
a, \(\left(x+m\right)m+x>3x+4\)
\(\Leftrightarrow mx+m^2+x>3x+4\)
\(\Leftrightarrow\left(m-2\right)x+m^2-4>0\left(1\right)\)
Nếu \(m=0,\) bất phương trình vô nghiệm
Nếu \(m>0\)
\(\left(1\right)\Leftrightarrow x>-m-2\)
\(\Rightarrow x\in\left(-m-2;+\infty\right)\)
\(\Rightarrow m>0\) thỏa mãn yêu cầu bài toán
Nếu \(m< 0\)
\(\left(1\right)\Leftrightarrow x< -m-2\)
\(\Rightarrow\) Không thỏa mãn
Vậy \(m>0\)
b, \(m\left(x-m\right)\ge x-1\)
\(\Leftrightarrow mx-m^2\ge x-1\)
\(\Leftrightarrow\left(m-1\right)x\ge m^2-1\left(1\right)\)
Nếu \(m=1,\) bất phương trình thỏa mãn
Nếu \(m>1\)
\(\left(1\right)\Leftrightarrow x\ge m+1\)
\(\Rightarrow m>1\) không thỏa mãn yêu cầu
Nếu \(m< 1\)
\(\left(1\right)\Leftrightarrow x\le m+1\)
\(\Rightarrow m< 1\) thỏa mãn yêu cầu bài toán
Vậy \(m< 1\)
Xét \(\dfrac{2x-1}{x}-\dfrac{x-2}{x-1}< 0\Leftrightarrow\dfrac{x^2-x+1}{x\left(x-1\right)}< 0\)
\(\Leftrightarrow x\left(x-1\right)< 0\Leftrightarrow0< x< 1\)
Xét \(3x^2-4x+m< 0\) trên \(\left(0;1\right)\)
\(\Leftrightarrow m< -3x^2+4x\) trên \(\left(0;1\right)\)
\(\Leftrightarrow m< \max\limits_{\left(0;1\right)}\left(-3x^2+4x\right)\)
Xét \(f\left(x\right)=-3x^2+4x\) trên \(\left(0;1\right)\)
\(a=-3< 0\); \(-\dfrac{b}{2a}=\dfrac{2}{3}\in\left(0;1\right)\) \(\Rightarrow f\left(x\right)_{max}=f\left(\dfrac{2}{3}\right)=\dfrac{4}{3}\)
\(\Rightarrow m< \dfrac{4}{3}\)
Xét \(x^2-5x+4\le0\Leftrightarrow1\le x\le4\Rightarrow D_1=\left[1;4\right]\)
Xét \(x^2-\left(m^2+3\right)x+2\left(m^2+1\right)\le0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-m^2-1\right)\le0\)
- Nếu \(\left|m\right|\ge1\Rightarrow D_2=\left[2;m^2+1\right]\)
- Nếu \(\left|m\right|< 1\Rightarrow D_2=\left[m^2+1;2\right]\)
Do \(2\in\left[1;4\right]\), để \(D=D_1\cap D_2\) là 1 đoạn có độ dài bằng 1
\(\Leftrightarrow\left[{}\begin{matrix}m^2+1=1\\m^2+1=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\pm\sqrt{2}\end{matrix}\right.\)
Đặt \(x^2+4x+3=t\left(t\ge-1\right)\)
\(\left(x^2+4x+3\right)\left(x^2+4x+6\right)\ge m,\forall x\in R\)
\(\Leftrightarrow\left(x^2+4x+3\right)^2+3\left(x^2+4x+3\right)\ge m,\forall x\in R\)
\(\Leftrightarrow m\le f\left(t\right)=t^2+3t,\forall x\in R\)
Yêu cầu bài toán thỏa mãn khi:
\(m\le minf\left(t\right)=-2\)
\(\Leftrightarrow mx-m^2\ge x-1\Leftrightarrow\left(m-1\right)x\ge m^2-1\)
- Với \(m=1\) tập nghiệm của BPT là R (ktm)
- Với \(m>1\) \(\Rightarrow m-1>0\Rightarrow x\ge\dfrac{m^2-1}{m-1}=m+1\) hay \([m+1;+\infty)\) (ktm)
- Với \(m< 1\Rightarrow m-1< 0\Rightarrow x\le m+1\) hay \((-\infty;m+1]\) có vẻ giống?
Nhẩm trắc nghiệm thì \(ax>b\) có tập nghiệm chứa dương vô cùng khi a>0, có tập nghiệm chứa âm vô cùng khi a<0
\(ax< b\) thì ngược lại
nhứt nách