Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải \(A=\frac{a^3+2a^2-1}{a^3+2a^22a+1}\) \(A=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}\) \(A=\frac{a^2\left(a+1\right)\left(a+1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}\) \(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2 +a+1\right)}\) \(A=\frac{a^2+a-1}{a^2+a+1}\) b, Gọi d là ƯCLN \(\left(a^2+a-1;a^2+a+1\right)\) \(\Rightarrow\)\(a^2+a-1⋮d\) \(a^2+a+1⋮d\) \(\Rightarrow\left(a^2+a+1\right)-\left(a^2+a-1\right)⋮d\) \(\Rightarrow2⋮d\) \(\Rightarrow d=1\) hoặc d=2 Nhận xét : \(a^2+a-1=a\left(a+1\right)-1\) Với số nguyên a ta có :a(a+1) là tích 2 số nguyên liên tiếp \(\Rightarrow a\left(a+1\right)⋮2\) \(\Rightarrow a\left(a+1\right)-1\) lẻ \(\Rightarrow a^2+a-1\) lẻ \(\Rightarrow\) d không thể bằng 2 Vậy d=1 (đpcm)
a. Ta có biến đổi:
\(A=\frac{a^3+2a^2-1}{a^3+2a^3+2a+1}\)
\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)
\(A=\frac{a^2+a-1}{a^2+a+1}\)
b. Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)
Vì \(a^2+a-1=a\left(a+1\right)-1\)là số lẻ nên d là số lẻ
Mặt khác, \(2=\left[a^2+a+1-\left(a^2+a-1\right)\right]⋮d\)
Nên d = 1 tức là \(a^2+a+1\)và \(a^2+a-1\)nguyên tố cùng nhau.
Vậy biểu thức A là phân số tối giản.
a ) A = 1/15 . 75/ x + 2 + 3/8 . 64/ 3x + 6
A = 1.75 / 15.( x + 2 ) + 3.64/8.( 3x + 6 )
A = 1.5/1.( x + 2 ) + 1.8/1.( x + 2 )
b ) A = 1.5/1.( x + 2 ) + 1.8/1.( x + 2 )
A = 5/ x+ 2 + 8/ x + 2
A = 5 + 8 / x + 2
A = 13/ x + 2
Thay x = 37
A = 13 / 37 + 2
A = 13 / 39
A = 1/3
Câu 2 :
B = 1 + 3 + 3^2 + 3^3 + ... + 3^199
3B = 3 + 3^2 + 3^3 + 3^4 + ... + 3^200
3B - B = ( 3 + 3^2 + 3^3 + 3^4 + ... 3^200 ) - ( 1 + 3 + 3^2 + 3^3 + ... + 3^199 )
2B = 3^200 - 1
B = 3^200 - 1 / 2