\(\frac{1}{9}\) = 0,(1)  ;  \(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2019

Bài 1:

Ta có:

\(\frac{a}{3}=\frac{b}{\frac{2}{3}}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{3}=\frac{b}{\frac{2}{3}}=\frac{a+b}{3+\frac{2}{3}}=\frac{a+b}{\frac{11}{3}}=\frac{11}{\frac{11}{3}}=3\)

=> \(\hept{\begin{cases}a=3.3\\b=3.\frac{2}{3}\end{cases}=\hept{\begin{cases}a=9\\b=2\end{cases}}}\)

=> ab = 92

Bài 2:

Hữu hạn: -7/16; 2/125; -9/8

Vô hạn tuần hoàn: -5/3; 5/6; -3/11

Chúc bạn học tốt !!!

28 tháng 5 2019

Bài 1: Áp dụng tính chất của dãy các tỉ số bằng nhau, ta có:

\(\frac{a}{3}=\frac{b}{\frac{2}{3}}=\frac{a+b}{3+\frac{2}{3}}=\frac{11}{\frac{11}{3}}=3\)

\(\Rightarrow\hept{\begin{cases}a=3.3=9\\b=\frac{2}{3}.3=2\end{cases}}\)

Vậy \(\overline{ab}=92\)

Bài 2: Số thập phân hữu hạn : \(\frac{-7}{16};\frac{2}{125};\frac{-9}{8}\)

Vì đó là những phân số tối giản với mẫu dương và mẫu không có ước nguyên tố khác 2 và 5 nên  phân số đó viết được dưới dạng số thập phân hữu hạn.\(\hept{\begin{cases}16=2^4\\125=5^3\\8=2^3\end{cases}}\)

          Số thập phân vô hạn tuần hoàn: \(\frac{-5}{3};\frac{5}{6};\frac{-3}{11}\)

Vì đó là những phân số tối giản với mẫu dương và mẫu có ước nguyên tố khác 2 và 5 nên phân số đó viết dưới dạng số thập phân vô hạn tuần hoàn.\(\hept{\begin{cases}3=3\\6=2.3\\11=11\end{cases}}\)

11 tháng 7 2018

Câu 1 :  Ta có : 

\(\hept{\begin{cases}\left|x+y-5\right|\ge0\forall x;y\\\left|2x-y+8\right|\ge0\forall x;y\end{cases}\Rightarrow\left|x+y-5\right|+\left|2x-y+8\right|\ge0\forall x;y}\)

Dấu \("="\)xảy ra 

\(\Leftrightarrow\hept{\begin{cases}\left|x+y-5\right|=0\\\left|2x-y+8\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y-5=0\\2x-y+8=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y=5\\2x-y=-8\end{cases}}}\)

\(\Leftrightarrow x+y+2x-y=5+-8\)

\(\Leftrightarrow3x=-3\)

\(\Leftrightarrow x=-1\)

Mà \(x+y=5\Rightarrow y=5-\left(-1\right)=6\)

Vậy \(x=-1;y=6\)

Câu 2 : Ta có : 

\(\left|x\right|\ge0\forall x;\left|x+2\right|\ge0\forall x\)

\(\Rightarrow\left|x\right|+\left|x+2\right|\ge0\forall x\)

Dấu \("="\)xảy ra 

\(\Leftrightarrow\hept{\begin{cases}\left|x\right|=0\\\left|x+2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=-2\end{cases}\Leftrightarrow}}\)Loại 

Vậy không có TH x thỏa mãn 

Câu 3 : Ta có : 

\(\left|-y\right|\ge0\forall y\)

\(\Rightarrow\frac{-2}{5}-\left|-y\right|\le-\frac{2}{5}\)

Mà : \(\left|\frac{1}{2}-\frac{1}{3}+x\right|\ge0\forall x\)

\(\Rightarrow\left|\frac{1}{2}-\frac{1}{3}+x\right|=-\frac{2}{5}-\left|-y\right|\)( vô lý ) 

Vậy không có TH x thỏa mãn

11 tháng 7 2018

Câu 3: Ta có: \(|\frac{1}{2}-\frac{1}{3}+x|\ge0\) Mà \(-\frac{2}{5}-|-y|< 0\)

Vậy không tồn tại x,y.

Bài 1 : Thực hiện phép tính(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)Bài 2 : Tìm x biết(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot...
Đọc tiếp

Bài 1 : Thực hiện phép tính

(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)

(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

Bài 2 : Tìm x biết

(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)

(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot x=\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)

(3) \(\frac{x}{\left(a+5\right)\left(4-a\right)}=\frac{1}{a+5}+\frac{1}{4-a}\)

(4) \(\frac{x+2}{11}+\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)

(5) \(\frac{x+1}{2015}+\frac{x+2}{2014}+\frac{x+3}{2013}+\frac{x+4}{2012}+4=0\)

Bài 3 : 

(1) Cho : A =\(\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}\); B =\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\)

CMR : \(\frac{A}{B}\)Là 1 số nguyên

(2) Cho : D =\(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2000}\)CMR : \(D< \frac{3}{4}\)

Bài 4 : Ký hiệu [x] là số nguyên lớn nhất không vượt quá x , gọi là phần nguyên của x.

VD : [1.5] =1 ; [3] =3 ; [-3.5] = -4

(1) Tính :\(\left[\frac{100}{3}\right]+\left[\frac{100}{3^2}\right]+\left[\frac{100}{3^3}\right]+\left[\frac{100}{3^4}\right]\)

(2) So sánh : A =\(\left[X\right]+\left[X+\frac{1}{5}\right]+\left[X+\frac{2}{5}\right]+\left[X+\frac{3}{5}\right]+\left[X+\frac{4}{5}\right]\)và B = [5x]. Biết x=3.7

0
14 tháng 10 2015

ngu thế ko biết lam à câu trả lời là: tao ko biet

 

4 tháng 9 2019

Giải giúp mình nhé

Mình đang cần gấp

4 tháng 9 2019

Bài 1

\(a,\left|x\right|=-\left|-\frac{5}{7}\right|=>x\in\varnothing\)

\(b,\left|x+4,3\right|-\left|-2,8\right|=0\)

\(=>\left|x+4,3\right|-2,8=0\)

\(=>\left|x+4,3\right|=0+2,8=2,8\)

\(=>x+4,3=\pm2,8\)

\(=>\hept{\begin{cases}x+4,3=2,8\\x+4,3=-2,8\end{cases}=>\hept{\begin{cases}x=-1,5\\x=-7,1\end{cases}}}\)

\(c,\left|x\right|+x=\frac{2}{3}\)

\(=>\hept{\begin{cases}x+x=\frac{2}{3}\\-x+x=\frac{2}{3}\end{cases}}=>\hept{\begin{cases}x=\frac{1}{3}\\x=-\frac{1}{3}\end{cases}}\)

Câu 1:thực hiện tínhC=(1-\(\frac{1}{3}\))(1-\(\frac{1}{6}\))(1-\(\frac{1}{10}\))(1-\(\frac{1}{15}\)).....(1-\(\frac{1}{210}\))Câu 2:tìm xa)   (x-2)(x+3) <0b)   3x+2+4.3x+1+3x-1Câu 3:Cho tỉ lệ thức \(\frac{a}{b}\)=\(\frac{c}{d}\).Chứng minh rằng :\(\frac{ab}{cd}\)=\(\frac{\left(a+b^2\right)}{\left(c+d\right)^2}\)Câu 4: Cho 3 số x<y<z thỏa mãn :x+y+z=51.Biết rằng 3 tổng của 2 trong 3 số đã cho tỉ với 9 ,12 ,13 .Tìm x,y,zCâu 5:  Cho tam giác ABC...
Đọc tiếp

Câu 1:thực hiện tính

C=(1-\(\frac{1}{3}\))(1-\(\frac{1}{6}\))(1-\(\frac{1}{10}\))(1-\(\frac{1}{15}\)).....(1-\(\frac{1}{210}\))

Câu 2:tìm x

a)   (x-2)(x+3) <0

b)   3x+2+4.3x+1+3x-1

Câu 3:Cho tỉ lệ thức \(\frac{a}{b}\)=\(\frac{c}{d}\).Chứng minh rằng :\(\frac{ab}{cd}\)=\(\frac{\left(a+b^2\right)}{\left(c+d\right)^2}\)

Câu 4: Cho 3 số x<y<z thỏa mãn :x+y+z=51.Biết rằng 3 tổng của 2 trong 3 số đã cho tỉ với 9 ,12 ,13 .Tìm x,y,z

Câu 5:  Cho tam giác ABC vuông cân tại A.Gọi D là một điểm bất kì trên cạnh BC (D khác B và C ).Vẽ hai tia Bx;Cy vuông góc với BC và nằm trên cùng một nửa mặt phẳng có bờ chứa BC và điểm  A.Qua A vẽ đường thẳng vuông góc với AD cắt Bx tại M và cắt Cy tại N.Chứng minh :

a) \(\Delta\)AMB =\(\Delta\)ADC

b) A là trung điểm của MN

c) chứng minh \(\Delta\)vuông cân

Câu 6:Cho\(\Delta\)ABC cân tại A=100 độ .Gọi M là 1 điểm nằm trong tam giác sao cho góc MBC =10 độ ;góc MCB=20 độ .Tính góc AMB

 

0
29 tháng 10 2018

\(\sqrt{32}\cdot18+2\cdot\sqrt{25}+\left|\frac{-1}{3}\right|\cdot\left|-6\right|-2^2\)

\(=4\cdot\sqrt{2}\cdot18+2\cdot5+\frac{1}{3}\cdot6-4\)

\(=72\cdot\sqrt{2}+\left(10+2-4\right)\)

\(=72\cdot\sqrt{2}+8\)

\(=8+72\sqrt{2}\)

29 tháng 10 2018

\(\left(x^2-4\right)\cdot\sqrt{x}=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x^2-4\right)=0\\\sqrt{x}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=0+4\\x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=4\\x=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-2\\x=2\\x=0\end{cases}}\)

Bài 1

\(a,\left(\frac{3}{5}\right)^2-\left[\frac{1}{3}:3-\sqrt{16}.\left(\frac{1}{2}\right)^2\right]-\left(10.12-2014\right)^0\)

\(=\frac{9}{25}-\left[\frac{1}{9}-4.\frac{1}{4}\right]-1\)

\(=\frac{9}{25}-\left(-\frac{8}{9}\right)-1\)

\(=\frac{9}{25}+\frac{8}{9}-1\)

\(=\frac{56}{225}\)

\(b,|-\frac{100}{123}|:\left(\frac{3}{4}+\frac{7}{12}\right)+\frac{23}{123}:\left(\frac{9}{5}-\frac{7}{15}\right)\)

\(=\frac{100}{123}:\left(\frac{4}{3}\right)+\frac{23}{123}:\frac{4}{3}\)

\(=\left(\frac{100}{123}+\frac{23}{123}\right):\frac{4}{3}\)

\(=1:\frac{4}{3}=\frac{3}{4}\)

Phần c đăng riêng vì mk chưa tìm đc cách giải bt mỗi đáp án :v 

\(c,\frac{\left(-5\right)^{32}.20^{43}}{\left(-8\right)^{29}.125^{25}}\)

\(=\frac{\left(-5\right)^{32}.\left(4.5\right)^{43}}{\left[4.\left(-2\right)\right]^{29}.\left(-5^3\right)^{25}}\)

\(=\frac{-5^{32}.4^{43}.5^{43}}{4^{29}.\left(-2\right)^{29}.\left(5\right)^{75}}\)

\(=\frac{\left(-5^4\right)^8.4^{43}.5^{43}}{4^{29}.\left(-2\right)^{29}.\left(5^3\right)^{25}}\)

\(=-\frac{1}{2}\)

25 tháng 10 2018

\(a.9\cdot3^2\cdot\frac{1}{81}=\frac{3^2.3^2.1}{3^4}=\frac{3^4}{3^4}=1\)

\(b.2\frac{1}{2}+\frac{4}{7}:\left(\frac{-8}{9}\right)\)

\(=\frac{5}{2}+\frac{4}{7}.\left(\frac{-9}{8}\right)\)

\(=\frac{5}{2}+\frac{-9}{14}=\frac{13}{7}\)

\(c.3,75.\left(7,2\right)+2,8.\left(3,75\right)\)

\(=3,75.\left(7,2+2,8\right)\)

\(=3,75.10=37,5\)

\(d.\left(\frac{-5}{13}\right).\frac{3}{7}+\left(\frac{-8}{13}\right).\frac{3}{7}+\left(\frac{-4}{7}\right)\)

\(=\frac{3}{7}.\left[\left(\frac{-5}{13}\right)+\left(\frac{-8}{13}\right)\right]+\left(\frac{-4}{7}\right)\)

\(=\frac{3}{7}.\left(-1\right)+\frac{-4}{7}\)

\(=\frac{-3}{7}+-\frac{4}{7}=-1\)

\(e.\sqrt{81}-\frac{1}{8}.\sqrt{64}+\sqrt{0,04}\)

\(=9-\frac{1}{8}.8+0,2\)

\(=9-1+0,2=8+0,2=8,2\)

25 tháng 10 2018

\(a-c\left(tựlm\right)\)

\(b.\left(x-1\right)^5=-32\)

\(\Rightarrow\left(x-1\right)^5=\left(-2\right)^5\)

\(\Rightarrow x-1=-2\)

\(x=-2+1=-1\)

\(d.\left(2^3:4\right).2^{x+1}=64\)

\(2.2^{x+1}=64\)

\(\Rightarrow2^{1+x+1}=64=2^6\)

\(\Rightarrow2+x=6\Rightarrow x=6-2=4\)