\(\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2018

\(a,\)Số cần tìm là :

   \(1:\frac{41}{20}=\frac{20}{41}\)

Vậy.................

b,Ta có :abcd \(⋮9\)và a+b+c+d chia hết cho 9

\(\Rightarrow1000a+100b+10c+d⋮9\)

\(\Rightarrow999a+99b+9c+d+a+b+c⋮9\)

\(=9\left(111a+11b+c\right)+a+b+c+d⋮9\)

20 tháng 6 2021

a) Gọi phân số cần tìm là a/b

Theo bài ta có: a/b + b/a = 41/20 mà a/b . b/a = 1

Đặt a/b - b/a = k

=> a/b = 41/20 + k/2 => b/a = 41/20 - k/2

=> a/b . b/a = 41/20 + k/2 . 41/20 - k/2 = 1

=>( 41/20 + k/2).( 41/20 - k/2) / 4 = 1

=> (41/20)^2 - k^2 = 4

=> 1681/ 400 - k^2 = 1600/400

=> k^2 = 81/400

=> k = 9/20

Vậy phân số cần tìm là: (41/20 + 9/20)/2 = 5/4

                                                                                                                                                                # Aeri # 

22 tháng 3 2018

Đề bài sai rồi phải là: \(\frac{41}{20}\) chứ.

Gọi phân số cần tìm là \(\frac{a}{b}\), ta có:

\(\frac{a}{b}+\frac{b}{a}=\frac{41}{20}\)

Ta thấy: \(\frac{a}{b}.\frac{b}{a}=1\)

Đặt \(\frac{a}{b}-\frac{b}{a}=k\)

\(\Rightarrow\frac{a}{b}=\frac{\frac{41}{20}+k}{2};\frac{b}{a}=\frac{\frac{41}{20}-k}{2}\)

\(\Rightarrow\frac{a}{b}.\frac{b}{a}=\frac{\left(\frac{41}{20}+k\right)\left(\frac{41}{20}-k\right)}{4}\)

\(\Rightarrow\left(\frac{41}{20}\right)^2-k^2=4\)

\(\Rightarrow\frac{1681}{400}-k^2=\frac{1600}{400}\)

\(\Rightarrow k^2=\frac{81}{400}\)

\(\Rightarrow k=\frac{9}{20}\)

Vậy: Phân số cần tìm là:

      \(\left(\frac{41}{20}+\frac{9}{20}\right)\div2=\frac{5}{4}\)

                                 Đáp số:\(\frac{5}{4}\)

26 tháng 3 2018

sai một chút , cảm ơn cậu đã giúp 

26 tháng 3 2017

Giả sử phân số và nghịch đảo của nó là: \(\frac{a}{b}\)\(\frac{b}{a}\)

Do phân số dương nên a;b cùng dấu hay a.b > 0

Ta có: \(\frac{a}{b}\)+    \(\frac{b}{a}\)- 2 =\(\frac{a^2+b^2-2ab}{ab}\)\(\frac{\left(a-b\right)^2}{ab}\)> hoặc = 0

Do đó \(\frac{a}{b}\)+  \(\frac{b}{a}\) > hoặc = 2

Vậy Tổng của 1 phân sô với số nghịch đảo của nó thì không nhỏ hơn 2

Câu 1:a) tính giá trị các biểu thức sau:A=2[(62 - 24) : 4] + 2014B = \(\left(1+2\frac{1}{3}-3\frac{1}{4}\right)\div\left(1+3\frac{7}{12}-4\frac{1}{2}\right)\)b) tìm x biết \(x-\left(\frac{5}{6}-x\right)=x-\frac{2}{3}\)Câu 2:a) tìm \(x\in Z\)biết \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)b)tìm các chữ số x,y sao cho 2014xy \(⋮\)42c) tìm các số nguyên a, b biết\(\frac{a}{7}-\frac{1}{2}=\frac{1}{b+1}\)Câu 3: a) tìm số tự nhiên n để...
Đọc tiếp

Câu 1:

a) tính giá trị các biểu thức sau:

A=2[(6- 24) : 4] + 2014

B = \(\left(1+2\frac{1}{3}-3\frac{1}{4}\right)\div\left(1+3\frac{7}{12}-4\frac{1}{2}\right)\)

b) tìm x biết \(x-\left(\frac{5}{6}-x\right)=x-\frac{2}{3}\)

Câu 2:

a) tìm \(x\in Z\)biết \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)

b)tìm các chữ số x,y sao cho 2014xy \(⋮\)42

c) tìm các số nguyên a, b biết\(\frac{a}{7}-\frac{1}{2}=\frac{1}{b+1}\)

Câu 3: 

a) tìm số tự nhiên n để (n+3)(n+1) là số nguyên tố

b) cho n = 7a5 + 8b4. Biết a - b = 6 và n chia hết cho 9. Tìm a; b

c)tìm phân số tối giản \(\frac{a}{b}\)lớn nhất (a,b\(\in\)N*) sao cho khi chia mỗi phân số 4/75 và 6/165 cho a/b đc kết quả là số tự nhiên

câu 4:

1. trên tia Ox lấy 2 điểm M và N sao cho OM= 3cm, ON= 7cm

a)tính MN

b) lấy điểm P thuộc tia Ox, sao cho MO = 2cm. tính OP

c)trong trường hợp M nằm giữa O và P, CMR P là trung điểm MN

2. cho 2014 điểm trong đó ko có 3 điểm nào thảng hàng. có bao nhiêu tam giác mà các đỉnh là 3 trong 2014 đỉnh đó

Câu 5:

a) cho \(S=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2014}{4^{2014}}.CMR:S< \frac{1}{2}\)

b) tìm số tự nhiên n sao cho n + S(n) = 2014. trong đó S(n) là tổng các chữ số của n

0
5 tháng 6 2017

Bạn gì ơi đăng thì đăng ít bài 1 thôi bạn đăng nhiều thế chẳng ai làm hết đc đâu

5 tháng 6 2017

Mình làm bài 4 

Ta có ; 7n và 7n + 1 là 2 số nguyên liên tiếp 

Mà ƯCLN của 2 số nguyên liên tiếp luôn luôn bằng 1

Vậy phân số : \(\frac{7n}{7n+1}\) luôn luôn tối giản với mọi n

3 tháng 9 2019

\(\frac{15}{A}=\frac{B}{7}\Leftrightarrow15.7=AB\Leftrightarrow105=AB\Leftrightarrow A\in1;3;5;7;15;35;105\) 

\(de:\frac{2n+1}{2n-1}\in Z^+\Rightarrow2n+1⋮2n-1\Rightarrow2n+1-2n+1⋮2n-1\)

\(\Leftrightarrow2⋮2n-1\Rightarrow2n-1=1\Leftrightarrow n=1\)