K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2023

a) Ta có \(\lim\limits_{x\rightarrow-\infty}\dfrac{4x+1}{-x+1}=\lim\limits_{x\rightarrow-\infty}\left(\dfrac{-4+\dfrac{1}{x}}{1+\dfrac{1}{x}}\right)=-4\)

b) Ta có \(\lim\limits_{x\rightarrow2}f\left(x\right)=\lim\limits_{x\rightarrow2}\dfrac{x^2-x-2}{x-2}=\lim\limits_{x\rightarrow2}\left(\dfrac{\left(x+1\right)\left(x-2\right)}{x-2}\right)\)

\(=\lim\limits_{x\rightarrow2}\left(x+1\right)=2+1=3\)

 Để hàm số đã cho liên tục tại \(x=2\) thì \(\lim\limits_{x\rightarrow2}f\left(x\right)=f\left(2\right)=m\) hay \(m=3\).

F x tại 0 =0

Lim x tới 0 =1/2

20 tháng 4 2022

Võ Ngọc Tú Uyênloading...  

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Với mọi điểm \({x_0} \in \left( {1;2} \right)\), ta có: \(f\left( {{x_0}} \right) = {x_0} + 1\).

\(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \left( {x + 1} \right) = {x_0} + 1\).

Vì \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right) = {x_0} + 1\) nên hàm số \(y = f\left( x \right)\) liên tục tại mỗi điểm \({x_0} \in \left( {1;2} \right)\).

b) \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {x + 1} \right) = 2 + 1 = 3\).

\(f\left( 2 \right) = 2 + 1 = 3\).

\( \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = f\left( 2 \right)\).

c) \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x + 1} \right) = 1 + 1 = 2\)

\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = k \Leftrightarrow 2 = k \Leftrightarrow k = 2\)

Vậy với \(k = 2\) thì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = k\).

27 tháng 4 2022

74630:243

27 tháng 4 2022

o

a. Có bao nhiêu giá trị của a để \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2-ax+2021}-x+1\right)=a^2\)b. Tìm a để hàm số f(x)=\(\left\{{}\begin{matrix}\dfrac{x^3+1}{x+1}khix\ne-1\\3akhix=-1\end{matrix}\right.\)gián đoạn tại điểm \(x_0=-1\)c. Cho tứ diện đều ABCD .Góc giữa 2 vecto DA và BD bằng?d. Cho hàm số y = f(x) = \(\dfrac{x^2-1}{2-2x}\)khi \(x\ne1\) .Để hàm số liên tục tại x=1 thì f(1) phải nhận giá trị nào dưới đây? (giải tự...
Đọc tiếp

a. Có bao nhiêu giá trị của a để \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2-ax+2021}-x+1\right)=a^2\)

b. Tìm a để hàm số f(x)=\(\left\{{}\begin{matrix}\dfrac{x^3+1}{x+1}khix\ne-1\\3akhix=-1\end{matrix}\right.\)gián đoạn tại điểm \(x_0=-1\)

c. Cho tứ diện đều ABCD .Góc giữa 2 vecto DA và BD bằng?

d. Cho hàm số y = f(x) = \(\dfrac{x^2-1}{2-2x}\)khi \(x\ne1\) .Để hàm số liên tục tại x=1 thì f(1) phải nhận giá trị nào dưới đây? (giải tự luận giúp em ạ)

A.-1            B.1           C.2                           D.0

e. Cho hàm số \(f\left(x\right)=x^3+2x-1\) .Xét phương trình f(x) = 0 (1), trong các mệnh đề sau tìm mệnh đề sai? giải tự luận giúp em ạ

A. (1) có nghiệm rên khoảng (-1;1)

B. (1) Không có nghiệm trên khoảng (-5;3)

C. (1) có nghiệm trên R 

D. (1) có nghiệm trên khoảng (0;1)

 

 

3
NV
14 tháng 3 2022

a.

\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2-ax+2021}-x+1\right)\)

\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{\left(\sqrt{x^2-ax+2021}-x\right)\left(\sqrt{x^2-ax+2021}+x\right)}{\sqrt{x^2-ax+2021}+x}+1\right)\)

\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{-ax+2021}{\sqrt{x^2-ax+2021}+x}+1\right)\)

\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{x\left(-a+\dfrac{2021}{x}\right)}{x\left(\sqrt{1-\dfrac{a}{x}+\dfrac{2021}{x^2}}+1\right)}+1\right)\)

\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{-a+\dfrac{2021}{x}}{\sqrt{1-\dfrac{a}{x}+\dfrac{2021}{x^2}}+1}+1\right)\)

\(=\dfrac{-a+0}{\sqrt{1+0+0}+1}+1=-\dfrac{a}{2}+1\)

\(\Rightarrow a^2=-\dfrac{a}{2}+1\Rightarrow2a^2+a-2=0\)

Pt trên có 2 nghiệm pb nên có 2 giá trị a thỏa mãn

NV
14 tháng 3 2022

b.

\(\lim\limits_{x\rightarrow-1}f\left(x\right)=\lim\limits_{x\rightarrow-1}\dfrac{x^3+1}{x+1}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(x^2-x+1\right)}{x+1}=\lim\limits_{x\rightarrow-1}\left(x^2-x+1\right)\)

\(=1+1+1=3\)

\(f\left(-1\right)=3a\)

Hàm gián đoạn tại điểm \(x_0=-1\) khi:

\(\lim\limits_{x\rightarrow-1}f\left(x\right)\ne f\left(-1\right)\Rightarrow3\ne3a\)

\(\Rightarrow a\ne1\)

19 tháng 11 2023

Khi \(x\ne-2\) thì \(f\left(x\right)=\dfrac{3x^2+5x-2}{x+2}\) là một hàm phân thức hoàn toàn xác định nên f(x) liên tục tại các khoảng \(\left(-\infty;-2\right);\left(-2;+\infty\right)\)(1)

\(\lim\limits_{x\rightarrow-2}f\left(x\right)=\lim\limits_{x\rightarrow-2}\dfrac{3x^2+5x-2}{x+2}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{3x^2+6x-x-2}{x+2}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{\left(x+2\right)\left(3x-1\right)}{x+2}\)

\(=\lim\limits_{x\rightarrow-2}3x-1=3\cdot\left(-2\right)-1=-7\)

\(f\left(-2\right)=m\)

Để hàm số liên tục trên R thì hàm số liên tục tại x=2 và liên tục tại các khoảng \(\left(-\infty;-2\right);\left(-2;+\infty\right)\)(2)

Từ (1),(2) suy ra Để hàm số liên tục trên R thì hàm số liên tục tại x=2

=>\(\lim\limits_{x\rightarrow-2}f\left(x\right)=f\left(-2\right)\)

=>m=-7

NV
2 tháng 3 2021

\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt{x+4}-2}{x}=\lim\limits_{x\rightarrow0^+}\dfrac{x}{x\left(\sqrt{x+4}+2\right)}=\lim\limits_{x\rightarrow0^+}\dfrac{1}{\sqrt{x+4}+2}=\dfrac{1}{4}\)

\(f\left(0\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\left(mx^2+2m+\dfrac{1}{4}\right)=2m+\dfrac{1}{4}\)

Hàm liên tục tại x=0 khi: \(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=f\left(0\right)\)

\(\Leftrightarrow2m+\dfrac{1}{4}=\dfrac{1}{4}\Leftrightarrow m=0\)

2 tháng 3 2021

em cảm ơn ạ

19 tháng 11 2023

\(\lim\limits_{x\rightarrow-2}f\left(x\right)=\dfrac{2x^2-x-10}{x+2}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{2x^2+4x-5x-10}{x+2}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{\left(x+2\right)\left(2x-5\right)}{x+2}\)

\(=\lim\limits_{x\rightarrow-2}2x-5=2\cdot\left(-2\right)-5=-9\)

\(f\left(-2\right)=a-2\)

hàm số liên tục tại x=-2 khi a-2=-9

=>a=-7

Hàm số không liên tục tại x=-2 thì \(a-2\ne-9\)

=>\(a\ne-7\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì, \({x_n} >  - 1\) và \({x_n} \to  - 1\). Khi đó \(f\left( {{x_n}} \right) = x_n^2 + 2\)

Ta có: \(\lim f\left( {{x_n}} \right) = \lim \left( {x_n^2 + 2} \right) = \lim x_n^2 + \lim 2 = {\left( { - 1} \right)^2} + 2 = 3\)

Vậy \(\mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x \right) = 3\).

Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì, \({x_n} <  - 1\) và \({x_n} \to  - 1\). Khi đó \(f\left( {{x_n}} \right) = 1 - 2{x_n}\).

Ta có: \(\lim f\left( {{x_n}} \right) = \lim \left( {1 - 2{x_n}} \right) = \lim 1 - \lim \left( {2{x_n}} \right) = \lim 1 - 2\lim {x_n} = 1 - 2.\left( { - 1} \right) = 3\)

Vậy \(\mathop {\lim }\limits_{x \to  - {1^ - }} f\left( x \right) = 3\).

b) Vì \(\mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {1^ - }} {\rm{ }}f\left( x \right) = 3\) nên \(\mathop {\lim }\limits_{x \to  - 1} f\left( x \right) = 3\).