K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Thay \(x = 0,y =  - 1\)vào bất phương trình \(2x - 3y < 3\) ta được:

\(2.0 - 3.\left( { - 1} \right) < 3 \Leftrightarrow 3 < 3\) (Vô lý)

Vậy \(\left( {0; - 1} \right)\) không là nghiệm.

b) Thay \(x = 2,y = 1\)vào bất phương trình \(2x - 3y < 3\) ta được:

\(2.2 - 3.1 < 3 \Leftrightarrow 1 < 3\) (Luôn đúng)

Vậy \(\left( {2;1} \right)\) là nghiệm.

c) Thay \(x = 3,y = 1\)vào bất phương trình \(2x - 3y < 3\) ta được:

\(2.3 - 3.1 < 3 \Leftrightarrow 3 < 3\) (Vô lý)

Vậy \(\left( {3;1} \right)\) không là nghiệm.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Thay tọa độ điểm (0;0) vào ta được: \(\left\{ \begin{array}{l}0 - 0 <  - 3\left( {ktm} \right)\\2.0 \ge  - 4\left( {tm} \right)\end{array} \right.\)

=> Loại A

Thay tọa độ điểm (-2;1) vào ta được: \(\left\{ \begin{array}{l} - 2 - 1 <  - 3\left( {ktm} \right)\\2.1 \ge  - 4\left( {tm} \right)\end{array} \right.\)

=> Loại B.

Thay tọa độ điểm (3;-1) vào ta được: \(\left\{ \begin{array}{l}3 - \left( { - 1} \right) <  - 3\left( {ktm} \right)\\2.\left( { - 1} \right) \ge  - 4\left( {tm} \right)\end{array} \right.\)

Loại C

Thay tọa độ điểm (-3;1) vào ta được: \(\left\{ \begin{array}{l} - 3 - 1 <  - 3\left( {tm} \right)\\2.1 \ge  - 4\left( {tm} \right)\end{array} \right.\)

Chọn D.

Câu 4:

Tọa độtâm I là;

x=(4+2)/2=3 và y=(-3+1)/2=-1

I(3;-1); A(4;-3)

IA=căn (4-3)^2+(-3+1)^2=căn 5

=>(C): (x-3)^2+(y+1)^2=5

Câu 3:

vecto AB=(2;3)

PTTS là:

x=1+2t và y=-2+3t

17 tháng 11 2023

a: Vì (P) đi qua A(0;1); B(1;2); C(3;-1) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}a\cdot0^2+b\cdot0+c=1\\a\cdot1^2+b\cdot1+c=2\\a\cdot3^2+b\cdot3+c=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}c=1\\a+b+1=2\\9a+3b+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=1\\a+b=1\\9a+3b=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}c=1\\9a+9b=9\\9a+3b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=1\\6b=11\\a+b=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}c=1\\b=\dfrac{11}{6}\\a=1-\dfrac{11}{6}=-\dfrac{5}{6}\end{matrix}\right.\)

b: Vì (P) đi qua M(0;-1); N(1;0) và P(2;3) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}a\cdot0^2+b\cdot0+c=-1\\a\cdot1^2+b\cdot1+c=0\\a\cdot2^2+b\cdot2+c=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}c=-1\\a+b-1=0\\4a+2b-1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\a+b=1\\4a+2b=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}c=-1\\a+b=1\\2a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\-a=-1\\a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\a=1\\b=0\end{matrix}\right.\)

c: Vì (P) đi qua M(1;-2); N(0;4); P(2;1) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}a\cdot1^2+b\cdot1+c=-2\\a\cdot0^2+b\cdot0+c=4\\a\cdot2^2+b\cdot2+c=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a+b+c=-2\\c=4\\4a+2b+c=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\a+b=-2-c=-6\\4a+2b=1-4=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}c=4\\4a+4b=-24\\4a+2b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=4\\2b=-21\\a+b=-6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}c=4\\b=-\dfrac{21}{2}\\a=-6-b=-6+\dfrac{21}{2}=\dfrac{9}{2}\end{matrix}\right.\)

d: Hoành độ đỉnh là 2 nên -b/2a=2

=>b=-4a(1)

Thay x=3 và y=1 vào (P), ta được:

\(a\cdot3^2+b\cdot3+c=1\)

=>\(9a+3b+c=1\left(2\right)\)

Thay x=-1 và y=2 vào (P), ta được:

\(a\cdot\left(-1\right)^2+b\left(-1\right)+c=2\)

=>a-b+c=2(3)

Từ (1),(2),(3), ta có hệ phương trình:

\(\left\{{}\begin{matrix}b=-4a\\9a+3b+c=1\\a-b+c=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-4a\\9a-12a+c=1\\a+4a+c=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=-4a\\-3a+c=1\\5a+c=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-4a\\-8a=-1\\5a+c=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=\dfrac{1}{8}\\b=-4\cdot\dfrac{1}{8}=-\dfrac{1}{2}\\c=2-5a=2-\dfrac{5}{8}=\dfrac{11}{8}\end{matrix}\right.\)

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

29 tháng 3 2020

Hai đường trung tuyến đã cho đều không phải là đường trung tuyến xuất phát từ A vì tọa độ của A không thỏa mãn các phương trình của chúng.

Đặt BM : 5x-3y-1=0 ; CN: y-3=0 là 2 trung tuyến của tam giác ABC.

Gọi M,N là trung tuyến xuất phát từ đỉnh B và C. Đặt B(x;y) => N((x-3)/2);((y-1)/2)) và B thuộc BM; C thuộc CN.<=> 5x-3y=0 và (y-1)/2-3=0 <=> x=21/5 và y=7 => B(21/5;7)

Tương tự => C(11/5;3)

=> BC(-2;-4) => n(4;-2). Vậy phương trình đường thẳng chứa cạnh BC là 4x-2y-54/5=0<=>10x-5y-27=0

Xét lại đáp án giúp mình với. Tại thấy hơi lẻ :)))

31 tháng 3 2020

Một trong các đáp án:

A. 7x - y = 0

B. 10x + 17y - 53 = 0

C. x + 7y - 2 = 0

D. -10x + 17y - 53 = 0

a: Thay x=-1 và y=2 vào 2x-y+3, ta được:

\(2x-y+3=-2-2+3=-1< 0\)

=>(-1;2) không là nghiệm của bất phương trình 2x-y+3>0

b:

-x+2+2(y-2)<2(2-x)(1)

=>-x+2+2y-4<4-2x

=>-x+2y-2-4+2x<0

=>x+2y-6<0

Thay x=-1 và y=2 vào x+2y-6, ta được:

 \(x+2y-6=-1+4-6=-3< 0\)

=>(-1;2) là nghiệm của bất phương trình (1)

c: Thay x=-1 và y=2 vào x-y-15, ta được:

\(x-y-15=-1-2-15=-18< 0\)

=>(-1;2) là nghiệm của bất phương trình x-y-15<0

d: 3(x-1)+4(y-2)<5x-3(2)

=>3x-3+4y-8<5x-3

=>3x+4y-11-5x+3<0

=>-2x+4y-8<0

=>x-2y+4>0

Khi x=-1 và y=2 thì \(x-2y+4=-1-4+4=-1< 0\)

=>(-1;2) không là nghiệm của bất phương trình (2)

AH
Akai Haruma
Giáo viên
15 tháng 1 2017

Lời giải:

1. Gọi đường thẳng cần tìm có dạng \((d):y=ax+b\)

\(I(3;1)\in (d)\Rightarrow 1=3a+b\Rightarrow b=1-3a\Rightarrow y=ax+1-3a\)

Xét \((d)\cap Ox\equiv C\Rightarrow \left\{\begin{matrix} y_C=0\\ x_c=\frac{3a-1}{a}\end{matrix}\right.\)

Xét \((d)\cap Oy\equiv D\Rightarrow \left\{\begin{matrix} x_D=0\\ y_D=1-3a\end{matrix}\right.\)

Mặt khác \(CE=DE\Rightarrow \left ( \frac{3a-1}{a}-2 \right )^2+4=4+(1-3a+2)^2\)

\(\Leftrightarrow a\in \left \{ \frac{-1}{3};\frac{1}{3};1 \right \}\) \(\Rightarrow \left[ \begin{array}{ll} y=\frac{x}{3} \\ y=\frac{-x}{3}+2 \\ y=x-2 \end{array} \right.\).

Vì $D\neq E$ nên \(\left[ \begin{array}{ll} y=\frac{-x}{3}+2 \\ y=x-2 \end{array} \right.\). Đây chính là hai phương trình đường thẳng cần tìm.

2) Gọi đường thẳng cần tìm có tên là $(d')$

Vì $(d')$ đối xứng với $(d)$ qua một điểm nên \((d)\parallel (d')\Rightarrow (d'): x-2y+t=0\)

Với $M$ là một điểm trên $(d)$, chọn $M(7;1)$. Khi đó $M'\in (d')$ phải đối xứng với $M$ qua $A$, tức là $A$ là trung điểm của $MM'$

\(\Rightarrow \left\{\begin{matrix} 2=x_A=\frac{x_M+x_{M'}}{2}=\frac{7+x_{M'}}{2}\\ 1=y_A=\frac{y_M+y_{M'}}{2}=\frac{1+y_{M'}}{2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x_{M'}=-3\\ y_{M'}=1\end{matrix}\right.\)

Vì $M'\in (d')$ nên \(-3-2+c=0\Rightarrow c=5\Rightarrow (d'):2x-y+5=0\)