K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2021

*Đừng nói em cop bạn ý :(

7 tháng 6 2021

G/s điểm cố định đó là \(\left(x_0;y_0\right)\) nên khi đó:
\(y_0=\left(m-2\right)x_0+2\) (với mọi m)

\(\Leftrightarrow mx_0-2x_0+2-y_0=0\) (với mọi m)

\(\Leftrightarrow mx_0-\left(2x_0+y_0-2\right)=0\) (với mọi m)

\(\Rightarrow\hept{\begin{cases}x_0=0\\2x_0+y_0-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x_0=0\\y_0=2\end{cases}}\)

=> đcđ đó là (0;2)

29 tháng 9 2022

???

11 tháng 11 2016

a/ Gọi điểm cố định \(M\left(x_0;y_0\right)\)

Khi đó đường thẳng y = k(x+3)-7 đi qua M , tức \(k\left(x_0+3\right)-7-y_0=0\) 

Vì đường thẳng y = k(x+3)-7 luôn đi qua M nên \(\hept{\begin{cases}x_0+3=0\\-y_0-7=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=-3\\y_0=-7\end{cases}}\)

Vậy đường thẳng đã cho luôn đi qua điểm M(-3;-7)

b/ Gọi điểm cố định là \(N\left(x_0;y_0\right)\)

Vì họ đường thẳng (m+2)x + (m-3)y -m+8 = 0 luôn đi qua N nên : 

\(\left(m+2\right).x_0+\left(m-3\right).y_0-m+8=0\)

\(\Leftrightarrow m\left(x_0+y_0-1\right)+\left(2x_0-3y_0+8\right)=0\)

Ta có \(\hept{\begin{cases}x_0+y_0-1=0\\2x_0-3y_0+8=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x_0=-1\\y_0=2\end{cases}}\)

Vậy điểm cố định N(-1;2)

Câu còn lại bạn làm tương tự nhé ^^

12 tháng 11 2016

c/ Đơn giản thôi mà =)

Ta cũng gọi điểm cố định đó là \(M\left(x_0;y_0\right)\)

Vì họ đường thẳng y=(2-k)x+k-5 đi qua M nên : 

\(y_0=\left(2-k\right)x_0+k-5\Leftrightarrow k\left(1-x_0\right)+\left(2x_0-y_0-5\right)=0\)

Ta có \(\hept{\begin{cases}1-x_0=0\\2x_0-y_0-5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=1\\y_0=-3\end{cases}}\)

Vậy điểm cố định là M(1;-3)

NV
15 tháng 12 2020

Giả sử điểm cố định mà (d) luôn đi qua có tọa độ \(M\left(x_0;y_0\right)\)

\(\Rightarrow\) Với mọi m, ta luôn có:

\(y_0=\left(2m+1\right)x_0+m-2\)

\(\Leftrightarrow m\left(2x_0+1\right)+x_0-y_0-2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x_0+1=0\\x_0-y_0-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-\dfrac{1}{2}\\y_0=-\dfrac{5}{2}\end{matrix}\right.\)

Vậy với mọi m thì (d) luôn đi qua điểm cố định có tọa độ \(\left(-\dfrac{1}{2};-\dfrac{5}{2}\right)\)

1 tháng 3 2022

???

1 tháng 3 2022

what?

13 tháng 11 2023

a:

Sửa đề: \(I\left(\dfrac{1}{2};-3\right)\)

Thay \(x=\dfrac{1}{2};y=-3\) vào (d): \(y=\left(1-2m\right)x+m-\dfrac{7}{2}\), ta được:

\(\left(1-2m\right)\cdot\dfrac{1}{2}+m-\dfrac{7}{2}=-3\)

=>\(\dfrac{1}{2}-m+m-\dfrac{7}{2}=-3\)

=>\(\dfrac{1}{2}-\dfrac{7}{2}=-3\)

=>-3=-3(đúng)

vậy: I(1/2;-3) là điểm cố định mà (d): \(y=\left(1-2m\right)x+m-\dfrac{7}{2}\) luôn đi qua

b: \(\left(d\right):y=\left(2m+1\right)x+m-2\)

\(=2mx+x+m-2\)

\(=m\left(2x+1\right)+x-2\)

Điểm mà (d) luôn đi qua có tọa độ là:

\(\left\{{}\begin{matrix}2x+1=0\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{2}-2=-\dfrac{5}{2}\end{matrix}\right.\)

NV
19 tháng 8 2021

Giả sử điểm cố định mà đường thẳng đi qua có tọa độ \(\left(x_0;y_0\right)\), khi đó với mọi m ta luôn có:

\(y_0=\left(m+2\right)x_0+\left(m-3\right)y_0-m+8\)

\(\Leftrightarrow m\left(x_0+y_0-1\right)+2x_0-4y_0+8=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+y_0-1=0\\2x_0-4y_0+8=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_0=-\dfrac{2}{3}\\y_0=\dfrac{5}{3}\end{matrix}\right.\) \(\Rightarrow\) điểm cố định có tọa độ \(\left(-\dfrac{2}{3};\dfrac{5}{3}\right)\)

19 tháng 8 2021

giải hộ em bài này vs ạ

tìm điểm cố định mà đường thẳng  y=(m+2).x+(m-3).y-m+8 luôn đi qua với mọi m

26 tháng 9 2015

a) Ta thấy điểm \(A\left(-1;1\right)\) thoả mãn phương trình của đường thẳng \(\left(m-2\right)x+\left(m-1\right)y=1\)  vì \(\left(m-2\right)\cdot\left(-1\right)+\left(m-1\right)\cdot1=-m+2+m-1=1.\) Vậy đường thẳng luôn đi qua điểm cố đinh là \(A\left(-1;1\right)\).

b)  Kẻ \(OH\perp d.\) Vì \(A\in d\)  nên \(OH\le OA.\) Dấu bằng xảy ra khi và chỉ khi \(H\equiv A\) hay đường thẳng \(d\perp OA\).  Ta có phương trình đường thẳng \(OA\)  là \(y=ax\) . Vì  \(OA\)  đi qua \(A\left(-1;1\right)\)  nên \(1=a\cdot\left(-1\right)=-a\to a=-1.\)  Vậy \(OA:y=-x.\)   Đường thẳng \(d:y=-\frac{m-2}{m-1}x+\frac{1}{m-1},\)  với \(m\ne1.\)  
Do đó \(d\perp OA\Leftrightarrow-\frac{m-2}{m-1}\cdot\left(-1\right)=-1\Leftrightarrow m-2=-\left(m-1\right)\Leftrightarrow m=\frac{3}{2}.\)

26 tháng 9 2015

a) Gọi ( x0 ; y0 ) là điểm cố địn mà hàm số luôn đi qua 

Thay x = x0 ; y = y0 ta có :

( m - 2 )x0 + ( m - 1 )y0 = 1 

=> mx0 - 2x0 + my0 - y0 = 1 

=> mx0 + my0 = 1 + y0 + 2x0 

=> m(x0 + y0 ) = 1 + y0 + 2x0 

Vì đẳng thức luôn đúng với moi m nên 

x0  + y0 = 0         

y0 + 2x0 + 1 = 0   

=> x0 + 1 = 0 => x0 = -1 => y 0 = 1 

Vậy (-1;1) là điểm có định mà hàm số luôn đi qua