Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{x\sqrt{x}-1}{x\sqrt{x}-\sqrt{x}}\right)\)
\(P=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(P=\left(\dfrac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(P=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\)
\(P=\dfrac{1}{\sqrt{x}-1}\)
b) P = \(\dfrac{1}{2}\) khi:
\(\dfrac{1}{\sqrt{x}-1}=\dfrac{1}{2}\)
\(\Rightarrow2=\sqrt{x}-1\)
\(\Rightarrow\sqrt{x}=3\)
\(\Rightarrow x=9\left(tm\right)\)
a: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{x-1}\right):\dfrac{x\sqrt{x}-1}{x\sqrt{x}-\sqrt{x}}\)
\(=\dfrac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{1}{\sqrt{x}-1}\)
b: P=1/2
=>căn x-1=2
=>căn x=3
=>x=9
Dễ thấy rằng y # 0 (để cho x : y là số xác định)
Hơn nữa x # 0, vì nếu x = 0 thì xy = x : y = 0 nhưng x - y # 0 (vì y # 0)
Vì xy = x : y suy ra y^2 = 1 ---> y = 1 hoặc y = -1
+ Nếu y = 1 ---> x - 1 = x.1 (vô nghiệm nên tr/hợp này loại)
+ Nếu y = -1 ---> x + 1 = - x ---> 2x = -1 ---> x = -1/2 (nhận)
Vậy x = -1/2 ; y = -1.
:)
a) \(\frac{3}{4}-\frac{2}{5}.x=x\)
\(\Rightarrow\frac{-2}{5}.x-x=\frac{-3}{4}\)
\(x.\left(\frac{-2}{5}-1\right)=\frac{-3}{4}\)
\(x.\frac{-7}{5}=\frac{-3}{4}\)
\(x=\frac{-3}{4}:\left(\frac{-7}{5}\right)\)
\(x=\frac{15}{28}\)
b) (2x-1).(3x-1/5).(4-2x) = 0
=> 2x - 1 = 0 => 2x = 1 => x = 1/2
3x-1/5 = 0 => 3x = 1/5 => x = 1/15
4-2x = 0 => 2x = 4 => x = 2
KL: x = 1/2 hoặc x = 1/15 hoặc x = 2
a) \(\frac{x+4}{x+3}< 1\)
\(\Leftrightarrow\frac{x+4}{x+3}-1< 0\)
\(\Leftrightarrow\frac{x+4-x-3}{x+3}< 0\)
\(\Leftrightarrow\frac{1}{x+3}< 0\)
\(\Leftrightarrow x+3< 0\)
\(\Leftrightarrow x< -3\)
Vậy \(x< -3\)
b) \(\frac{x+3}{x+4}>1\)
\(\Leftrightarrow\frac{x+3}{x+4}-1>0\)
\(\Leftrightarrow\frac{x+3-x-4}{x+4}>0\)
\(\Leftrightarrow-\frac{1}{x+4}>0\)
\(\Leftrightarrow x+4< 0\)
\(\Leftrightarrow x< -4\)
Vậy \(x< -4\)
c) \(\frac{x+3}{2010}+\frac{x+2}{2011}+\frac{x+1}{2012}+\frac{x+2025}{4}=0\)
\(\Leftrightarrow\left(\frac{x+3}{2010}+1\right)+\left(\frac{x+2}{2011}+1\right)+\left(\frac{x+1}{2012}+1\right)+\left(\frac{x+2025}{4}-3\right)=0\)
\(\Leftrightarrow\frac{x+2013}{2010}+\frac{x+2013}{2011}+\frac{x+2013}{2012}+\frac{x+2013}{4}=0\)
\(\Leftrightarrow\left(x+2013\right)\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{4}\right)=0\)
\(\Leftrightarrow x+2013=0\) (Vì \(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{4}\ne0\))
\(\Leftrightarrow x=-2013\)
Vậy \(x=-2013\)
Nhớ tick đó ✔✔✔
Bài làm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Bài làm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(\left(x-1\right)\left(x+2\right)< 0\) <=> x-1 và x+2 khác dấu
Mà x-1 < x+2 nên \(\hept{\begin{cases}x-1< 0\\x+2>0\end{cases}=>\hept{\begin{cases}x< 1\\x>-2\end{cases}=>-2< x< 1}}\)
Vậy.........
\(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\) <=> x-2 và x+2/3 cùng dấu
\(\left(+\right)\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}=>\hept{\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}=>x< -\frac{2}{3}}}\)
\(\left(+\right)\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}=>\hept{\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}=>x>2}}\)
Vậy x>2 hoặc x<-2/3
\(\sqrt{x}=4\)
\(\sqrt{x}=\sqrt{16}\)
\(x=16\)
\(\sqrt{x+1}=5\)
\(\sqrt{x+1}=\sqrt{25}\)
\(x+1=25\)
\(x=24\)