Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{5+2\sqrt{5}}{\sqrt{5}+\sqrt{2}}=\dfrac{\left(5+2\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)}{3}=\dfrac{5\sqrt{5}-5\sqrt{2}+10-2\sqrt{10}}{3}\)
b: \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}=\sqrt{\left(2-\sqrt{3}\right)^2}=2-\sqrt{3}\)
a,Ta có : \(1-\sqrt{3}\); \(\sqrt{2}-\sqrt{6}=\sqrt{2}\left(1-\sqrt{3}\right)\Rightarrow1-\sqrt{3}< \sqrt{2}\left(1-\sqrt{3}\right)\)
Vậy \(1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)
b, Đặt A = \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)(*)
\(\sqrt{2}A=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2\)
\(=\sqrt{7}+1-\sqrt{7}+1-2=0\Rightarrow A=0\)
Vậy (*) = 0
1:
Ta có: \(\sqrt{2}-\sqrt{6}\)
\(=\sqrt{2}\left(1-\sqrt{3}\right)< 0\)
\(\Leftrightarrow1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)
\(-3\sqrt{3}=-\sqrt{27}\)
\(-2\sqrt{7}=-\sqrt{28}\)
mà 27<28
nên \(-3\sqrt{3}>-2\sqrt{7}\)
1. Ta có 4=2 căn 4
Căn 4<căn 5
=> 2 căn 5 >4
2. Ta có 3^2=9 =16-7=16-căn 49
( căn 15 -1)^2
= 15 -2 căn 15 +1= 16-2 căn 15 =16- căn 60
Căn 60>căn49
=> 3> căn 15 -1
3. Ta có 6^2=36=27+9= 27+ căn 81
(căn 26 +1)^2=26 +2 căn 26 +1=27+ 2 căn 26 =27+ căn 52
Căn 52< căn 81
=> 6> căn 26+1
4. Ta có (căn 2 -2)^2 =2- 4 căn 2+4=6- 4 căn 2
(căn 3 -3 )^2 = 3 -6 căn 3 +9= 12- 6 căn 3
Lại có 8 căn 2 =căn 128
6 căn 3 =căn 108
=> (căn 3 -3)^2> 2(căn 2 -2)^2
=> căn 3 -3 > căn 2-2
\(2\sqrt{5}>4\)
\(3< \sqrt{15-1}\)
\(6>\sqrt{26-1}\)
\(\sqrt{2-2}=\sqrt{3-3}\)
\(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2\)
\(\Rightarrow\sqrt{37}-\sqrt{15}>2\)
Ta có: \(\sqrt{37}>\sqrt{36}\)
\(-\sqrt{15}>-\sqrt{16}\)
Do đó: \(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=2\)
\(8^2=64=32+2\sqrt{16^2}\)
\(\left(\sqrt{15}+\sqrt{17}\right)^2=32+2\sqrt{15.17}=32+2\sqrt{\left(16-1\right)\left(16+1\right)}\)
\(=32+2\sqrt{16^2-1}\)
\(< =>8^2>\left(\sqrt{15}+\sqrt{17}\right)^2\)
\(8>\sqrt{15}+\sqrt{17}\)
\(\left(\sqrt{2019}+\sqrt{2021}\right)^2=4040+2\sqrt{2019.2021}\)
\(=4040+2\sqrt{\left(2020-1\right)\left(2020+1\right)}=4040+2\sqrt{2020^2-1}\)
\(\left(2\sqrt{2020}\right)^2=8080=4040+2\sqrt{2020^2}\)
\(< =>\sqrt{2019}+\sqrt{2021}< 2\sqrt{2020}\)
mik chọn điền
<
mik lười chép ại đề bài
Ta có: \(\sqrt{7}< \sqrt{9}\); \(\sqrt{15}< \sqrt{16}\)
\(\Rightarrow\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)