K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 8 2020

d/

\(\Leftrightarrow sinx.cosx\left(sin^2x-cos^2x\right)=\frac{\sqrt{2}}{8}\)

\(\Leftrightarrow2sinx.cosx\left(cos^2x-sin^2x\right)=-\frac{\sqrt{2}}{4}\)

\(\Leftrightarrow sin2x.cos2x=-\frac{\sqrt{2}}{4}\)

\(\Leftrightarrow\frac{1}{2}sin4x=-\frac{\sqrt{2}}{4}\)

\(\Leftrightarrow sin4x=-\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=-\frac{\pi}{4}+k2\pi\\4x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow x=...\)

NV
27 tháng 8 2020

c/

\(\Leftrightarrow\left(sinx-\sqrt{3}cosx\right)\left(sinx+\sqrt{3}\right)cosx=2\left(sinx+\sqrt{3}cosx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+\sqrt{3}cosx=0\\sinx-\sqrt{3}cosx=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx=0\\\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{3}\right)=0\\sin\left(x-\frac{\pi}{3}\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=k\pi\\x-\frac{\pi}{3}=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{3}+k\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

17 tháng 5 2016

a) Hàm số f(x) = 2x3 + 6x + 1 là hàm đa thức nên liên tục trên R.

Mặt khác vì f(0).f(1) = 1.(-3) < 0 nên phương trình có nghiệm trong khoảng (1; 2).

Vậy phương trình f(x) = 0 có ít nhất hai nghiệm.

b) Hàm số g(x) = cosx - x xác định trên R nên liên tục trên R.

Mặt khác, ta có g(0).g() = 1. (-) < 0 nên phương trình đã cho có nghiệm trong khoảng (0; ).

17 tháng 5 2016

Hoàng anh gia lai và Võ Đong Anh Tuấn chắc chắn là 1 người

5 tháng 7 2021

a) Pt\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2xcos^2x\left(sin^2x+cos^2x\right)+3sinx.cosx-\dfrac{m}{4}+2=0\)

\(\Leftrightarrow1-\dfrac{3}{4}sin^22x-\dfrac{3}{2}sin2x-\dfrac{m}{4}+2=0\)

\(\Leftrightarrow-3sin^22x-6sin2x-m+12=0\)

Đặt \(t=sin2x;t\in\left[-1;1\right]\)

Pttt: \(-3t^2-6t-m+12=0\)

\(\Leftrightarrow-3t^2-6t+12=m\) (1)

Đặt \(f\left(t\right)=-3t^2-6t+12;t\in\left[-1;1\right]\) 

Vẽ BBT sẽ tìm được \(f\left(t\right)_{min}=3;f\left(t\right)_{max}=15\)\(\Leftrightarrow3\le f\left(t\right)\le15\)\(\Rightarrow m\in\left[3;15\right]\) thì pt (1) sẽ có nghiệm

mà \(m\in Z\) nên tổng m nguyên để pt có nghiệm là 13 m

Vậy có tổng 13 m nguyên

5 tháng 7 2021

b) Pt\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\left(1\right)\\2cos^2x-\left(2m+1\right)cosx+m=0\left(2\right)\end{matrix}\right.\)

Từ (1)\(\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\left(k\in Z\right)\)

\(x\in\left[0;2\pi\right]\Rightarrow0\le\dfrac{\pi}{2}+k2\pi\le2\pi\)\(\Leftrightarrow-\dfrac{1}{4}\le k\le\dfrac{3}{4}\)\(\Rightarrow k=0\)

Tại k=0\(\Rightarrow x=\dfrac{\pi}{2}\)

Để pt ban đầu có 4 nghiệm pb \(\in\left[0;2\pi\right]\)

\(\Leftrightarrow\) Pt (2) có 3 nghiệm pb khác \(\dfrac{\pi}{2}\)

Xét pt (2) có: \(2cos^2x-\left(2m+1\right)cosx+m=0\)

Vì là phương trình bậc hai ẩn \(cosx\) nên pt (2) chỉ có nhiều nhất ba nghiệm \(\Leftrightarrow\) Pt (2) có một nghiệm cosx=0

\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\) mà \(x\ne\dfrac{\pi}{2}\)

\(\Rightarrow\) Pt (2) chỉ có nhiều nhất hai nghiệm

\(\Rightarrow\) Pt ban đầu không thể có 4 nghiệm phân biệt

Vậy \(m\in\varnothing\) 

NV
21 tháng 1 2021

a.

Tổng là cấp số nhân lùi vô hạn với \(\left\{{}\begin{matrix}u_1=1\\q=-sin^2x\end{matrix}\right.\)

Do đó: \(S=\dfrac{u_1}{1-q}=\dfrac{1}{1+sin^2x}\)

b. Tương tự, tổng cấp số nhân lùi vô hạn với \(\left\{{}\begin{matrix}u_1=1\\q=cos^2x\end{matrix}\right.\)

\(\Rightarrow S=\dfrac{1}{1-cos^2x}=\dfrac{1}{sin^2x}\)

c. Do \(0< x< \dfrac{\pi}{4}\Rightarrow0< tanx< 1\)

Tổng trên vẫn là tổng cấp số nhân lùi vô hạn với \(\left\{{}\begin{matrix}u_1=1\\q=-tanx\end{matrix}\right.\)

\(\Rightarrow S=\dfrac{1}{1+tanx}\)

NV
6 tháng 8 2020

e/ Tử số đến đâu và mẫu số đến đâu bạn?

f/ Căn đến đâu bạn?

g/ Căn đến đâu bạn?

h/ \(y=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\)

\(=1-\frac{1}{2}\left(2sinx.cosx\right)^2=1-\frac{1}{2}sin^22x\)

Do \(0\le sin^22x\le1\Rightarrow\frac{1}{2}\le y\le1\)

\(y_{max}=1\) khi \(sin^22x=0\)

\(y_{min}=\frac{1}{2}\) khi \(sin^22x=1\)

t/ \(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)

\(y=1-3sin^2x.cos^2x=1-\frac{3}{4}\left(2sinx.cosx\right)^2\)

\(y=1-\frac{3}{4}sin^22x\)

Tượng tự câu trên \(\Rightarrow\frac{1}{4}\le y\le1\)

\(y_{min}=\frac{1}{4}\) khi \(sin^22x=1\)

\(y_{max}=1\) khi \(sin^22x=0\)

Tốt nhất là bạn sử dụng công cụ gõ công thức

NV
24 tháng 7 2020

d/

Gần như y hệt câu c

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x+\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx=2\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)+sin\left(x+\frac{\pi}{6}\right)=2\)

Do \(\left\{{}\begin{matrix}sin\left(2x-\frac{\pi}{6}\right)\le1\\sin\left(x+\frac{\pi}{6}\right)\le1\end{matrix}\right.\) nên đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}sin\left(2x-\frac{\pi}{6}\right)=1\\sin\left(x+\frac{\pi}{6}\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\\x+\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=\frac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow x=\frac{\pi}{3}+k2\pi\)

NV
24 tháng 7 2020

c/

\(\Leftrightarrow\left(\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x\right)+\left(\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx\right)=1\)

\(\Leftrightarrow sin\left(2x+\frac{\pi}{6}\right)+sin\left(x-\frac{\pi}{6}\right)=1\)

\(\Leftrightarrow cos\left(2x-\frac{\pi}{3}\right)+sin\left(x-\frac{\pi}{6}\right)-1=0\)

\(\Leftrightarrow cos2\left(x-\frac{\pi}{6}\right)+sin\left(x-\frac{\pi}{6}\right)-1=0\)

\(\Leftrightarrow1-2sin^2\left(x-\frac{\pi}{6}\right)+sin\left(x-\frac{\pi}{6}\right)-1=0\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{6}\right)\left(1-2sin\left(x-\frac{\pi}{6}\right)\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{6}\right)=0\\sin\left(x-\frac{\pi}{6}\right)=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-\frac{\pi}{6}=k\pi\\x-\frac{\pi}{6}=\frac{\pi}{6}+k2\pi\\x-\frac{\pi}{6}=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\pi\\x=\frac{\pi}{3}+k2\pi\\x=\frac{4\pi}{3}+k2\pi\end{matrix}\right.\)

29 tháng 7 2019
https://i.imgur.com/9qSBKHl.jpg
29 tháng 7 2019
https://i.imgur.com/zw6cbvs.jpg