Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x2 + 3x + 2)(x2 + 7x + 12) = 24
=> (x + 1)(x + 2)(x + 3)(x + 4) = 24
=> (x2 + 5x + 4)(x2 + 5x + 6) = 24
Đặt a = x2 + 5x + 4 ta được:
a.(a + 2) = 24 => a2 + 2a - 24 = 0 => (a - 4)(a + 6) = 0 => a = 4 hoặc a = -6
+ Với a = 4 => x2 + 5x + 4 = 4 => x2 + 5x = 0 => x(x + 5) = 0 => x = 0 hoặc x = -5
+ Với a = -6 => x2 + 5x + 4 = -6 => x2 + 5x + 10 = 0, mà x2 + 5x + 10 > 0 => vô nghiệm
Vậy x = 0 , x = -5
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)
\(\Leftrightarrow\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]=24\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=24\)
\(\Leftrightarrow\left(x^2+5x+5\right)^2-1=24\)
\(\Leftrightarrow\left(x^2+5x+5\right)^2=25\)
Mà \(x^2+5x+5>0\forall x\)
\(\Rightarrow x^2+5x+5=5\Rightarrow x\left(x+5\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy pt có tập nghiệm S={0,-5}
pt <=> (x+1).(x+2).(x+3).(x+4) = 24
<=> [(x+1).(x+4)].[(x+2).(x+3)] = 24
<=> (x^2+5x+4).(x^2+5x+6) = 24
<=> (x^2+5x+5)^2-1 = 24
<=> (x^2+5x+5) = 25
=> x^2+5x+5 = 5 [ vì x^2+5x+5 = (x+2,5)^2-0,25 >= -0,25 > -5 ]
=> x=0 hoặc x=-5
Vậy pt có tập nghiệm S = {-5;0}
k mk nha
a3-b3 = (a-b)(a2-ab+b2) , áp dung hằng đẳng thức rồi phân tích nha bạn
<=>\(\orbr{\begin{cases}3x^2-7x+1=x^2-3x+5\\3x^2-7x+1=-x^2+3x-5\end{cases}}\)
<=> \(\orbr{\begin{cases}2x^2-4x-4=0\\4x^2-10x+6=0\end{cases}}\)
Sau đó áp dụng công thức nghiệm là ra
(x^2+3x+2)(x^2+7X+12)=24
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)
\(\Leftrightarrow\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]=24\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=24\)
đặt \(x^2+5x+5=a\)=> ta có phương trình \(\Leftrightarrow\left(a-1\right)\left(a+1\right)=24\)
\(\Leftrightarrow a^2-1=24\)\(\Leftrightarrow a^2=25\Leftrightarrow a=\orbr{\begin{cases}5\\-5\end{cases}}\)
+)\(x^2+5x+5=5\)\(\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow x=\orbr{\begin{cases}5\\0\end{cases}}\)
+) \(x^2+5x+5=-5\)\(\Leftrightarrow x^2+5x+10=0\)\(\Rightarrowđenta=5^2-4.10=-15< 0\Rightarrow ptvonghiem\)
vậy \(x=\orbr{\begin{cases}0\\5\end{cases}}\)
( x^2 + 3x + 2 )( x^2 + 7x + 12 ) = 24
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)=24\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=24\)
Đặt x2 + 5x + 5 = a = ta có : \(\Leftrightarrow\left(a-1\right)\left(a+1\right)=24\)
\(\Leftrightarrow a^2-1=24\Leftrightarrow a^2=25\Leftrightarrow a=\orbr{\begin{cases}5\\-5\end{cases}}\)
+)\(x^2+5x+5=5\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow x=\orbr{\begin{cases}5\\0\end{cases}}\)
+)\(x^2+5x+5=-5\Leftrightarrow x^2+5x+10=0\)
\(\Rightarrowđenta=5^2-4.10=-15< 0\Rightarrow ptvonghiem\)
\(Vay.x=\orbr{\begin{cases}5\\0\end{cases}}\)