Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: \(\sqrt{2x+5}=\sqrt{3-x}\)
\(\Leftrightarrow2x+5=3-x\)
\(\Leftrightarrow2x+x=3-5\)
\(\Leftrightarrow3x=-2\)
hay \(x=-\dfrac{2}{3}\)
2) Ta có: \(\sqrt{2x-5}=\sqrt{x-1}\)
\(\Leftrightarrow2x-5=x-1\)
\(\Leftrightarrow2x-x=-1+5\)
\(\Leftrightarrow x=4\)
3 , \(PT\left(đk:\frac{16}{3}\ge x\ge3\right)< =>x^2-3x=16-3x\)
\(< =>x^2-16=0< =>\left(x-4\right)\left(x+4\right)=0< =>\orbr{\begin{cases}x=4\left(tm\right)\\x=-4\left(ktm\right)\end{cases}}\)
4 , \(PT\left(đk:...\right)< =>2x^2-3=4x-3< =>2x^2-4x=0\)
\(< =>2x\left(x-2\right)=0< =>\orbr{\begin{cases}x=0\left(...\right)\\x=2\left(...\right)\end{cases}}\)
bạn tự tìm đk rồi đối chiếu nhé :P
1) Ta có: \(\sqrt{4x}=\sqrt{5}\)
nên 4x=5
hay \(x=\dfrac{5}{4}\)
2) Ta có: \(\sqrt{16x}=8\)
nên 16x=64
hay x=4
3, \(2\sqrt{x}=\sqrt{9x}-3\left(đk:x\ge0\right)\)
\(< =>2\sqrt{x}-3\sqrt{x}+3=0\)
\(< =>3-\sqrt{x}=0< =>x=9\)(tmđk)
4, \(\sqrt{3x-1}=4\left(đk:x\ge\frac{1}{3}\right)\)
\(< =>3x-1=16< =>3x-17=0\)
\(< =>x=\frac{17}{3}\)(tmđk)
\(a,A=\left(1;2\right)\Leftrightarrow x=1;y=2\\ \Leftrightarrow2=\left(m+1\right)-2m+3\\ \Leftrightarrow-m+4=2\Leftrightarrow m=2\)
\(c,\)Giả sử điểm cố định là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow y_0=\left(m+1\right)x_0-2m+3\\ \Leftrightarrow y_0=mx_0+x_0-2m+3\\ \Leftrightarrow m\left(x_0-2\right)+\left(x_0-y_0+3\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0-2=0\\x_0-y_0+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=2\\y_0=5\end{matrix}\right.\Leftrightarrow B\left(2;5\right)\)
Vậy \(\left(d\right)\) luôn đi qua điểm \(B\left(2;5\right)\) cố định
\(d,\) Pt hoành độ giao điểm:
\(2=\left(2+1\right)x-2\cdot2+3\\ \Leftrightarrow2=3x-1\Leftrightarrow x=1\\ \Leftrightarrow C\left(1;2\right)\)
Vậy ...
Hình 1:
Áp dụng tslg:
\(cosK=\dfrac{IK}{MK}\)\(\Rightarrow cos42^0=\dfrac{12}{y}\Rightarrow y\approx16,15\)
\(tanK=\dfrac{IM}{IK}\Rightarrow tan42^0=\dfrac{x}{12}\Rightarrow x\approx10,8\)
Hình 2:
\(sinG=\dfrac{HT}{GT}\Rightarrow sin35^0=\dfrac{y}{16}\Rightarrow y\approx9,18\)
\(cosG=\dfrac{GH}{GT}\Rightarrow cos35^0=\dfrac{x}{16}\Rightarrow x\approx10,11\)
Hình 1:
\(x=12\cdot\tan42^0\simeq10.8\left(cm\right)\)
\(y=\sqrt{10.8^2+12^2}\simeq16,14\left(cm\right)\)
Bài 1:
a) \(2\sqrt{18}-7\sqrt{32}-\sqrt{72}+3\sqrt{8}\)
\(=2\sqrt{9.2}-7\sqrt{16.2}-\sqrt{36.2}+3\sqrt{4.2}\)
\(=6\sqrt{2}-28\sqrt{2}-6\sqrt{2}+6\sqrt{2}\)
\(=-22\sqrt{2}\)
b) \(\sqrt{\left(1+2\sqrt{3}\right)^2-\sqrt{4+2\sqrt{3}}}\)
\(=1+2\sqrt{3}-\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=1+2\sqrt{3}-\sqrt{3}-1\)
\(=\sqrt{3}\)
c) \(\dfrac{5\sqrt{3}-3}{5-\sqrt{3}}-\dfrac{4}{\sqrt{3}+\sqrt{7}}-\dfrac{6}{\sqrt{3}}\)
\(=\dfrac{\sqrt{3}\left(5-\sqrt{3}\right)}{5-\sqrt{3}}-\dfrac{4\left(\sqrt{7}-\sqrt{3}\right)}{7-3}-2\sqrt{3}\)
\(=5-\sqrt{3}-\sqrt{7}+\sqrt{3}-2\sqrt{3}\)
\(=5-\sqrt{7}-2\sqrt{3}\)
câu 4:
a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH^2=HB\cdot HC\)
hay AH=6(cm)
b: Xét ΔBAC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
nên \(AM=\dfrac{BC}{2}=6.5\left(cm\right)\)
tui nè
35+2347=2382
# Girl 2k7 #
=2382
Cho bà Linh cx được mak
............