Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+9}\\ =\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(\left(x^2\right)^2-2x^2+1\right)+4}\\ =\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\)
do: \(+\left(x+1\right)^2\ge0\Rightarrow3.\left(x+1\right)^2+9\ge9\Rightarrow\sqrt{3\left(x+1\right)^2+9}\ge\sqrt{9}=3\)(1)\(+\left(x^2-1\right)^2\ge0\Rightarrow5\left(x^2-1\right)^2+4\ge4\Rightarrow\sqrt{5\left(x^2-1\right)^2+4}\ge\sqrt{4}=2\)(2)
từ (1) và(2)\(\Rightarrow\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}\ge3+2=5\)
câu b bạn làm tương tự
a/ pt đãcho tương đương với
6x\(^2\)+ 21x -2x-7-6x+5x-6x+5= 16
<=>18x=18
=> x=1
b/ pt đã cho tương đương với
10x\(^2\)+9x-10x\(^2\)-15x+2x+3= 8
<=> -4x=5
<=.> x=-\(\frac{5}{4}\)
c/ pt đã cho tương đương với
21x-15x\(^2\)-35+25x+15x\(^2\)-10x+6x-4-2=0
<=>42x=41
<=> x= \(\frac{41}{42}\)
d/ pt đã cho tương đương với
( x\(^2\)+x )(x+6)-x\(^3\)=5x
<=> x\(^3\)+6x\(^2\)+x\(^2\)+6x-x\(^3\)=5x
<=> 8x\(^2\)+6x-5x=0
<=>8x\(^2\)+16x-10x-5x=0
<=> (x+2)2x-5(x+2)=0
<=> (x+2)(2x-5)=0
<=>x+2=0 hoặc 2x+5=0
=> x=-2 hoặc x= -\(\frac{5}{2}\)
\(a.\left(10x+9\right)x-\left(5x-1\right)\left(2x+3\right)=8.\)
\(\Leftrightarrow10x^2+9x-\left(10x^2+15x-2x-3\right)=8\)
\(\Leftrightarrow10x^2+9x-10x^2-13x+3=8\)
\(\Leftrightarrow-4x+3=8\)
\(\Leftrightarrow-4x=5\)
\(\Leftrightarrow x=-\frac{5}{4}\)
\(b.\left(3x-5\right)\left(7-5x\right)+\left(5x-2\right)\left(3x-2\right)-2=0\)
\(\Leftrightarrow21x-15x^2-35+25x+15x^2-10x+6x-4-2=0\)
\(\Leftrightarrow42x-41=0\)
\(\Leftrightarrow42x=41\)
\(\Leftrightarrow x=\frac{41}{42}\)
Answer:
\(6x^2-\left(2x+3\right)\left(3x-2\right)=7\)
\(\Rightarrow6x^2-\left(6x^2+9x-4x-6\right)=7\)
\(\Rightarrow6x^2-\left(6x^2+5x-6\right)=7\)
\(\Rightarrow6x^2-6x^2-5x+6=7\)
\(\Rightarrow-5x+6=7\)
\(\Rightarrow-5x=1\)
\(\Rightarrow x=\frac{-1}{5}\)
\(5x\left(12+7\right)-3x\left(80x-5\right)=-100\)
\(\Rightarrow5x.19-240x^2+15x=-100\)
\(\Rightarrow95x-240x^2+15x=-100\)
\(\Rightarrow-240x^2+110x+100=0\)
\(\Rightarrow-24x^2-11x-10=0\)
\(\Rightarrow24\left(x^2-\frac{11}{24}x+\frac{121}{2304}\right)-\frac{1081}{96}=0\)
\(\Rightarrow24\left(x-\frac{11}{48}\right)^2-\frac{1081}{96}=0\)
\(\Rightarrow24\left(x-\frac{11}{48}\right)^2=\frac{1081}{2304}\)
\(\Rightarrow\left(x-\frac{11}{48}\right)^2=\left(\frac{\pm\sqrt{1081}}{48}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{11}{48}=\frac{\sqrt{1081}}{48}\\x-\frac{11}{48}=\frac{-\sqrt{1081}}{48}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{1081}+11}{48}\\x=\frac{11-\sqrt{1081}}{48}\end{cases}}\)
\(\left(3x-5\right)\left(7-5x\right)-\left(5x-2\right)\left(2-3x\right)=4\)
\(\Rightarrow\left(21x-15x^2-35+25x\right)-\left(10x-15x^2-4+6x\right)-4=0\)
\(\Rightarrow36x-15x^2-35-16x+15x^2+4-4=0\)
\(\Rightarrow\left(-15x^2+15x^2\right)+\left(36x-16x\right)+\left(-35+4-4\right)=0\)
\(\Rightarrow30x-35=0\)
\(\Rightarrow x=\frac{7}{6}\)
a) (3x - 1)(2x + 7) - (x + 1)(6x - 5) = 16
6x2 + 21x - 2x - 7 - 6x2 + 5x - 6x + 5 = 16
(6x2 - 6x2) + (21x - 2x + 5x - 6x) + (-7 + 5) = 16
18x - 2 = 16
18x = 18
x = 1
Vậy x = 1
b) (10x + 9)x - (5x - 1)(2x + 3) = 8
10x2 + 9x - 10x2 - 15x + 2x + 3 = 8
(10x2 - 10x2) + (9x - 15x + 2x) + 3 = 8
-4x + 3 = 8
-4x = 5
x = \(\frac{-5}{4}\)
Vậy x = \(\frac{-5}{4}\)
c) x(x + 1)(x + 6) - x3 = 5x
(x2 + x)(x + 6) - x3 = 5x
x3 + 7x2 + 6x - x3 = 5x
7x2 + 6x = 5x
x(7x + 6) = 5x
=> 7x + 6 = 5
7x = -1
x = \(\frac{-1}{7}\)
Vậy x = \(\frac{-1}{7}\)
d) (3x - 5)(7 - 5x) + (5x + 2)(3x - 2) - 2 = 0
21x - 15x2 - 35 + 25x + 15x2 - 10x + 6x - 4 - 2 = 0
(-15x2 + 15x2) + (21x + 25x - 10x + 6x) + (-35 - 4 - 2) = 0
42x - 41 = 0
42x = 41
x = \(\frac{41}{42}\)
Vậy x = \(\frac{41}{42}\)
a: \(\Leftrightarrow6x^2-6x^2+4x-9x+6=7\)
=>-5x=1
hay x=-1/5
b: \(\Leftrightarrow5x\left(12x+7\right)-3x\left(80x-5\right)=-100\)
\(\Leftrightarrow60x^2+35x-240x^2+15x=-100\)
\(\Leftrightarrow-180x^2+50x+100=0\)
hay \(x\in\left\{\dfrac{5+\sqrt{745}}{36};\dfrac{5-\sqrt{745}}{36}\right\}\)
c: \(\Leftrightarrow21x-15x^2-35+25x-\left(10x-15x^2-4+6x\right)=4\)
\(\Leftrightarrow-15x^2+46x-35+15x^2-16x+4=4\)
=>30x-31=4
=>30x=35
hay x=7/6
\(1) 2x+1=15-5x \)
\(⇔2x+5x=15-1\)
\(⇔7x=14\)
\(⇔x=2\)
vậy pt có 1 nghiệm là x=2
\(2) 3x-2=2x+5\)
\(⇔3x-2x=5+2\)
\(⇔x=7\)
vậy pt có 1 nghiệm là x=7
\(3) 7(x-2)=5(3x+1)\)
\(⇔7x-14=15x+5\)
\(⇔7x-15x=5+14\)
\(⇔-8x=19\)
\(⇔x=-\dfrac{19}{8}\)
vậy pt có 1 nghiệm là x=-\(\dfrac{19}{8}\)
\(4) 2x+5=20-3x\)
\(⇔2x+3x=20-5\)
\(⇔5x=15\)
\(⇔x=3\)
vậy pt có 1 nghiệm là x=3
\(5) -4x+8=0\)
\(⇔-4x=-8\)
\(⇔x=2\)
vậy pt có 1 nghiệm là x=2
\(6) x-3=10-5x\)
\(⇔x+5x=10+3\)
\(⇔6x=13\)
\(⇔x=\dfrac{13}{6}\)
vậy pt có 1 nghiệm là \(x=\dfrac{13}{6}\)
\(7) 3x-1=x+3\)
\(⇔3x-x=3+1\)
\(⇔2x=4\)
\(⇔x=2\)
vậy pt có 1 nghiệm là x=2
\(8) 2(x+1)=5x-7\)
\(⇔2x+2=5x-7\)
\(⇔2x-5x=-7-2\)
\(⇔-3x=-9\)
\(⇔x=3\)
vậy pt có 1 nghiệm là x=3.
ĐKXĐ: \(\left\{{}\begin{matrix}3x^2+5x+1>=0\\3x^2+5x-7>=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=\dfrac{-5+\sqrt{13}}{6}\\x< =\dfrac{-5-\sqrt{13}}{6}\end{matrix}\right.\\\left[{}\begin{matrix}x>=\dfrac{-5+\sqrt{109}}{6}\\x< =\dfrac{-5-\sqrt{109}}{6}\end{matrix}\right.\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x< =\dfrac{-5-\sqrt{109}}{6}\\x>=\dfrac{-5+\sqrt{109}}{6}\end{matrix}\right.\)
\(\sqrt{3x^2+5x+1}-\sqrt{3x^2+5x-7}=2\)
=>\(\sqrt{3x^2+5x+1}-3-\sqrt{3x^2+5x-7}+1=0\)
=>\(\dfrac{3x^2+5x+1-9}{\sqrt{3x^2+5x+1}+3}-\dfrac{3x^2+5x-7-1}{\sqrt{3x^2+5x-7}+1}=0\)
=>\(3x^2+5x-8=0\)
=>\(\left(3x+8\right)\left(x-1\right)=0\)
=>\(\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-\dfrac{8}{3}\left(nhận\right)\end{matrix}\right.\)