K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

60) \(\sqrt{7-3\sqrt{5}}=\dfrac{\sqrt{14-6\sqrt{5}}}{\sqrt{2}}=\dfrac{\left(3-\sqrt{5}\right)}{\sqrt{2}}=\dfrac{3\sqrt{2}-\sqrt{10}}{2}\)

59) \(\sqrt{6+\sqrt{35}}=\dfrac{\sqrt{12+2\sqrt{35}}}{\sqrt{2}}=\dfrac{\sqrt{7}+\sqrt{5}}{\sqrt{2}}=\dfrac{\sqrt{14}+\sqrt{10}}{2}\)

61) \(\sqrt{23+3\sqrt{5}}=\dfrac{\sqrt{46+6\sqrt{5}}}{\sqrt{2}}=\dfrac{3\sqrt{5}+1}{\sqrt{2}}=\dfrac{3\sqrt{10}+\sqrt{2}}{2}\)

62) \(\sqrt{7-\sqrt{33}}=\dfrac{\sqrt{14-2\sqrt{33}}}{\sqrt{2}}=\dfrac{\sqrt{11}-\sqrt{3}}{\sqrt{2}}=\dfrac{\sqrt{22}-\sqrt{6}}{2}\)

63) \(\sqrt{8+\sqrt{55}}=\dfrac{\sqrt{16+2\sqrt{55}}}{\sqrt{2}}=\dfrac{\sqrt{11}+\sqrt{5}}{\sqrt{2}}=\dfrac{\sqrt{22}+\sqrt{10}}{2}\)

 

1 tháng 7 2021

Câu 64 và 38 bạn làm đc ko ạ? Vs cả bạn giải chi tiết hơn giùm mình đc ko ạ?

1 tháng 7 2021

57.\(\sqrt{8-\sqrt{55}}=\sqrt{\dfrac{16-2.\sqrt{5}.\sqrt{11}}{2}}=\sqrt{\dfrac{\sqrt{11}^2-2.\sqrt{5}.\sqrt{11}+\left(\sqrt{5}\right)^2}{2}}\)

\(=\sqrt{\dfrac{\left(\sqrt{11}-\sqrt{5}\right)^2}{2}}=\dfrac{\left|\sqrt{11}-\sqrt{5}\right|}{\sqrt{2}}=\dfrac{\sqrt{11}-\sqrt{5}}{\sqrt{2}}\)

58. \(\sqrt{7+\sqrt{33}}=\sqrt{\dfrac{14+2\sqrt{3}.\sqrt{11}}{2}}=\sqrt{\dfrac{\left(\sqrt{11}\right)^2+2\sqrt{3}.\sqrt{11}+\left(\sqrt{3}\right)^2}{2}}\)

\(=\sqrt{\dfrac{\left(\sqrt{11}+\sqrt{3}\right)^2}{2}}=\dfrac{\left|\sqrt{11}+\sqrt{3}\right|}{\sqrt{2}}=\dfrac{\sqrt{11}+\sqrt{3}}{\sqrt{2}}\)

mấy câu dưới bạn cũng làm tương tự thôi

 

 

60) \(\sqrt{7-3\sqrt{5}}=\dfrac{\sqrt{14-6\sqrt{5}}}{\sqrt{2}}=\dfrac{3-\sqrt{5}}{\sqrt{2}}=\dfrac{3\sqrt{2}-\sqrt{10}}{2}\)

61) \(\sqrt{23+3\sqrt{5}}=\dfrac{\sqrt{46+6\sqrt{5}}}{\sqrt{2}}=\dfrac{3\sqrt{5}+1}{\sqrt{2}}=\dfrac{3\sqrt{10}+\sqrt{2}}{2}\)

62) \(\sqrt{7-\sqrt{33}}=\dfrac{\sqrt{14-2\sqrt{33}}}{\sqrt{2}}=\dfrac{\sqrt{11}-\sqrt{3}}{\sqrt{2}}=\dfrac{\sqrt{22}-\sqrt{6}}{2}\)

63) \(\sqrt{8+\sqrt{55}}=\dfrac{\sqrt{16+2\sqrt{55}}}{\sqrt{2}}=\dfrac{\sqrt{11}+\sqrt{5}}{\sqrt{2}}=\dfrac{\sqrt{22}+\sqrt{10}}{2}\)

23 tháng 6 2018

Giải:

\(\sqrt{41-12\sqrt{5}}\) (Sửa đề)

\(=\sqrt{36+5-12\sqrt{5}}\)

\(=\sqrt{36-12\sqrt{5}+5}\)

\(=\sqrt{6^2-2.6.\sqrt{5}+\left(\sqrt{5}\right)^2}\)

\(=\sqrt{\left(6-\sqrt{5}\right)^2}\)

\(=6-\sqrt{5}\)

Vậy ...

6: \(=3\cdot2\sqrt{3}-4\cdot3\sqrt{3}+5\cdot4\sqrt{3}=14\sqrt{3}\)

7: \(=2\sqrt{3}+5\sqrt{3}-4\sqrt{3}=3\sqrt{3}\)

8: \(=2\cdot4\sqrt{2}+4\cdot2\sqrt{2}-5\cdot3\sqrt{2}=\sqrt{2}\)

9: \(=3\cdot2\sqrt{5}-2\cdot3\sqrt{5}+4\sqrt{5}=4\sqrt{5}\)

10: \(=2\cdot2\sqrt{6}-2\cdot3\sqrt{6}+3\sqrt{6}-5\sqrt{6}=-4\sqrt{6}\)

bn ghi đề rõ hơn ik bn

a) Ta có: \(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{12}{3-\sqrt{3}}\)

\(=\dfrac{2\left(\sqrt{3}+1\right)}{2}-\dfrac{3\left(2+\sqrt{3}\right)}{1}+\dfrac{12\left(3+\sqrt{3}\right)}{6}\)

\(=\sqrt{3}+1-6-3\sqrt{3}+6+2\sqrt{3}\)

\(=1\)

b) Ta có: \(\dfrac{1}{\sqrt{3}-\sqrt{2}}-\dfrac{2}{\sqrt{7}+\sqrt{5}}-\dfrac{3}{\sqrt{5}-\sqrt{2}}+\dfrac{4}{\sqrt{7}+\sqrt{3}}\)

\(=\sqrt{3}+\sqrt{2}-\sqrt{7}+\sqrt{5}-\sqrt{5}-\sqrt{2}+\sqrt{7}-\sqrt{3}\)

=0

26 tháng 8 2018

\(\sqrt{29+12\sqrt{5}}+\sqrt{29-12\sqrt{5}}\)

\(=\sqrt{\left(2\sqrt{5}+3\right)^2}+\sqrt{\left(2\sqrt{5}-3\right)^2}\)

\(=\left|2\sqrt{5}+3\right|+\left|2\sqrt{5}-3\right|\)

\(=2\sqrt{5}+3+2\sqrt{5}-3=4\sqrt{5}\)

26 tháng 6 2021

\(\sqrt{29+12\sqrt{5}}+\sqrt{29-12\sqrt{5}}\)

\(\sqrt{29+2.2\sqrt{5}.3}+\sqrt{29-2.2\sqrt{5}.3}\)

\(\sqrt{\left(2\sqrt{5}\right)^2+2.2\sqrt{5}.3+3^2}+\sqrt{\left(2\sqrt{5}\right)-2.2\sqrt{5}.3+3^2}\)

\(\sqrt{\left(2\sqrt{5}+3\right)^2}+\sqrt{\left(2\sqrt{5}-3\right)^2}\)

\(\left|2\sqrt{5}+3\right|+\left|2\sqrt{5}-3\right|\)

\(2\sqrt{5}+3+2\sqrt{5}-3\)

\(4\sqrt{5}\)

a) Ta có: \(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{12}{3-\sqrt{3}}\)

\(=\dfrac{2\left(\sqrt{3}+1\right)}{2}-\dfrac{3\left(2+\sqrt{3}\right)}{1}+\dfrac{12\left(3+\sqrt{3}\right)}{6}\)

\(=\sqrt{3}+1-6-3\sqrt{3}+2\left(3+\sqrt{3}\right)\)

\(=-2\sqrt{3}-5+6+2\sqrt{3}\)

=1

b) Ta có: \(\dfrac{1}{\sqrt{3}-\sqrt{2}}-\dfrac{2}{\sqrt{7}+\sqrt{5}}-\dfrac{3}{\sqrt{5}-\sqrt{2}}+\dfrac{4}{\sqrt{7}+\sqrt{3}}\)

\(=\sqrt{3}+\sqrt{2}-\sqrt{7}+\sqrt{5}-\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{3}\)

\(=\sqrt{2}-\sqrt{3}\)