">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2017

1

9 tháng 2 2017

1 đó

2 tháng 11 2017

b)x3-2x2-4xy2+x

=x(x2-2x-4y2+1)

=x[(x2-2x+1)-4y2]

=x[(x-1)2-4y2]

=x(x-1-2y)(x-1+2y)

2 tháng 11 2017

c) (x+2)(x+3)(x+4)(x+5)-8

=[(x+2)(x+5)][(x+3)(x+4)]-8

=(x2+5x+2x+10)(x2+4x+3x+12)-8

=(x2+7x+10)(x2+7x+12)-8

đặt x2+7x+10 =a ta có

a(a+2)-8

=a2+2a-8

=a2+4a-2a-8

=(a2+4a)-(2a+8)

=a(a+4)-2(a+4)

=(a+4)(a-2)

thay a=x2+7x+10 ta đc

(x2+7x+10+4)(x2+7x+10-2)

=(x2+7x+14)(x2+7x+8)

bài 2 x3-x2y+3x-3y

=(x3-x2y)+(3x-3y)

=x2(x-y)+3(x-y)

=(x-y)(x2+3)

8 tháng 2 2017

1) \(\frac{x-y}{z-y}=-10\Leftrightarrow x-y=10\left(y-z\right)\)

\(\Leftrightarrow x-y=10y-10z\)

\(\Leftrightarrow x=11y-10z\)

Thay x=11y-10z vào biểu thức \(\frac{x-z}{y-z}\), ta có:

\(\frac{11y-10z-z}{y-z}=\frac{11y-11z}{y-z}=\frac{11\left(y-z\right)}{y-z}=11\)

Chá quá, có ghi nhìn không rõ đề

8 tháng 2 2017

2) \(2x^2=9x-4\)

\(\Leftrightarrow2x^2-9x+4=0\)

\(\Leftrightarrow2x^2-8x-x+4=0\)

\(\Leftrightarrow2x\left(x-4\right)-1\left(x-4\right)\)

\(\Leftrightarrow\left(2x-1\right)\left(x-4\right)=0\)

\(\Leftrightarrow2x-1=0\) hoặc x-4=0

1) 2x-1=0<=>x=1/2

2)x-4=0<=>x=4(Loại)

=> x=1/2

10 tháng 10 2017

Xét hình thang cân ABCD có:

MA=MB (M là trung điểm AB:gt)

=>MA đối xứng với MB qua MN

AD=BC (do ABCD là htc)

=>AD đối xứng với BC qua MN

ND=NC (N là trung điểm của AC:gt)

=>ND đối xứng với NC qua MN

Do đó tứ giác MADN đối xứng với tứ giác MBCN qua MN

Vậy htc ABCD có một trục đối xứng là MN

18 tháng 8 2016

A B M C D I K H x y K'

Kẻ hình phụ và các điểm như hình trên. (chú ý CK' , IH , DK vuông góc với AB)

Dễ dàng chứng minh được IK và IK' lần lượt là các đường trung bình của hình thang CDBM và CDMA  => K, K' cố định

=> \(\begin{cases}IK=\frac{1}{2}\left(CM+BD\right)\\IK'=\frac{1}{2}\left(AC+MD\right)\end{cases}\) 

\(\Rightarrow IK=IK'=\frac{1}{2}AB\) không đổi

Vì IK // BD nên góc DBA = góc IKA = 60 độ

=> tam giác IKK' là tam giác đều có cạnh không đổi

Từ I kẻ đường cao IH => H là trung điểm AB =>H cố định  (1) . Đặt AB = a

\(\Rightarrow IH^2=IK^2-\left(\frac{IK}{2}\right)^2=\left(\frac{a}{2}\right)^2-\left(\frac{a}{4}\right)^2=\frac{3a^2}{16}\Rightarrow IH=\frac{a\sqrt{3}}{4}\)(2) không đổi 

Suy ra \(I\in\left(H;\frac{a\sqrt{3}}{4}\right)\) hay tập hợp quỹ tích điểm I thuộc đường tròn tâm H bán kính \(\frac{a\sqrt{3}}{4}\) 

18 tháng 8 2016

Quí tích ?

23 tháng 2 2017

Hình bạn tự vẽ nhé!!!

Ta có: \(\widehat{ACB}=180^o-\widehat{ACD}=180^o-100^o=80^o\\ \)

Xét tam giác ADC ta có: \(\widehat{DAC}+\widehat{ACD}+\widehat{ADC}=180^o\)

\(\Leftrightarrow y^o+100^o+x^o=180^o\)

\(\Leftrightarrow x^o+y^o=180^o-100^o=80^o\left(1\right)\)

Xét tam giác ABC ta có:\(\widehat{BAC}+\widehat{ABD}+\widehat{ADB}=180^o\)

\(\Leftrightarrow2y^o+2x^o+x^o=180^o\)

\(\Leftrightarrow2y^o+3x^o=180^o\left(2\right)\)

Thế (1) vào (2) ta được: \(2.\left(80-x^o\right)+3x^o=180^o\)

\(\Leftrightarrow160^o-2x^o+3x^o=180^o\)

\(\Leftrightarrow160^o+x^o=180^o\)

\(\Leftrightarrow x^o=180^o-160^o=20^o\)

Khi đó giá trị của \(x=20\)

Chúc bạn học tốtleuleu

22 tháng 2 2017

\(x=20\)

17 tháng 9 2017

Bài 2 :

a ) \(25-20x+4x^2=0\)

\(\Leftrightarrow\left(5-2x\right)^2=0\)

\(\Leftrightarrow5-2x=0\Rightarrow x=\dfrac{5}{2}\)

Vậy \(x=\dfrac{5}{2}\)

17 tháng 9 2017

a,\(\left(-2x^2+3x\right)\left(x^2-x+3\right)\\ \Leftrightarrow-2x^4+2x^3-6x^2+3x^3-3x^2+9x\\ \Leftrightarrow-2x^4+5x^3-3x^2+3x\)

\(b,x\left(x-2\right)\left(x+2\right)-\left(x-3\right)\left(x^2+3x+9+6\right)+6\left(x+1\right)^2=15\\ \Leftrightarrow x\left(x^2-4\right)-\left(x^3-27\right)+6\left(x^2+2x+1\right)=15\\ \Leftrightarrow x^3-4x-x^3+27+6x^2+12x+6=15\\ \Leftrightarrow6x^2+8x+18=0\\ \Leftrightarrow6\left(x^2+\dfrac{4}{3}x+3\right)=0\\ \Leftrightarrow\left(x+\dfrac{2}{3}\right)^2+\dfrac{23}{9}=0\)

Với mọi x thì \(\left(x+\dfrac{2}{3}\right)^2\ge0\Rightarrow\left(x+\dfrac{2}{3}\right)^2+\dfrac{23}{9}>0\)

Do đó ko tìm đc giá trị nào của x thỏa mãn đề bài

Vậy..

Xét tứ giác ABEC có 

AB//EC

AC//BE

Do đó: ABEC là hình bình hành

Suy ra: AC=BE

mà AC=BD

nên BE=BD

hay ΔBED cân tại B