Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trả lời
lấy 2 điểm M,N thuộc đg tròn sao cho MN là đg kính.MN=2
áp dụng bđt tg(Th 3 điểm thg hg ko sao nha)
MA+NA>=MN=2
tg tự MB+NB>2
..
=>(MA+MB+MC+MD+ME)+(NA+NB+NC+NE)>=10
=>chắc chắn có 1 tg >=5
bài 1: em tự kẻ hình nha
a, Xét 2 tam giác AMB và CME ta có: góc AMB= góc CME( đối đỉnh), AM=MC(gt),BM=ME(gt)
Vậy 2 tam giác AMB=CME(c-g-c)
b, Ta có: AM=MC, BM=ME nên AECB là hình bình hành
Vậy AE=BC và AE song song với BC
c, Vì AEBC là hình bình hành nên góc BAC= góc ACE( so le trong do AB song song với CE vì AECB là hbh)
Vậy ACE=90 độ hay CE vuông góc với AC
a) Xét \(\Delta\)ADI và \(\Delta\)AHI có:
AD = AH (gt)
DI = HI (gt)
AI: cạnh chung
Do đó \(\Delta\)ADI = \(\Delta\)AHI (c.c.c)
b) Xét \(\Delta\)AHC vuông tại D và \(\Delta\)ABC vuông tại A có ^C chung nên ^HAC = ^B
\(\Delta\)ABC vuông tại A có ^C = 300 nên ^B = 600
Vậy ^HAC = 600
\(\Delta\)AHD có ^HAC = 600 và AH = AD nên \(\Delta\)AHD đều (đpcm)
c) \(\Delta\)ADI = \(\Delta\)AHI (cmt) suy ra ^DAI = ^HAI (hai góc tương ứng)
Xét \(\Delta\)ADK và \(\Delta\)AHK có:
AD = AH (gt)
^DAI = ^HAI (cmt)
AK: cạnh chung
Do đó \(\Delta\)ADK = \(\Delta\)AHK (c.g.c)
=> ^ADK = ^AHK = 900 (hai góc tương ứng)
Kết hợp với AB vuông góc AC suy ra AB//KD (đpcm)
d) Chứng minh được: \(\Delta\)AHB = \(\Delta\)EHK (c.g.c)
=> ^HAB = ^HEK => KE // AB
Khi đó qua K có hai đường thẳng KD, KE song song với AB (trái với tiên đề Ơ - cơ - lít)
Vậy KD trùng KE hay D,K,E thẳng hàng (đpcm)
Bạn tham khảo tại link dưới đây nhé.
Câu hỏi của Nguyễn Thị Ngọc Ánh - Toán lớp 7 - Học toán với OnlineMath (https://olm.vn/hoi-dap/question/1172749.html)
Trả lời:
1.a) Vì tam giác ABC cân tại A
=>B=ACD
Mà ACD=ECN(đối đỉnh)
=>B=ECN
Vì AB=AC(tam giác ABC cân tại A)
Mà AC=IC
=>AB=IC
Xét tam giác ABD và tam giác ICE có:
AB=IC(c/m trên)
B=ECN(c/m trên)
BD=CE(gt)
=>tam giác ABD=tam giác ICE(c.g.c)
2.
Xét tam giác BMD và tam giác CEN có:
BDM=CNE(=90 độ)
BD=CE(gt)
B=ECN(c/m trên)
=>tam giác BDM=tam giác CEN(g.c.g)
=>BM=CN(2 cạnh tương ứng)
~Học tốt!~