Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{2019}-\frac{1}{2020}\)
\(=1-\frac{1}{2020}>1\)
1.3.77−1+3.7.99−3+7.9.1313−7+9.13.1515−9+\frac{19-13}{13.15.19}+13.15.1919−13
=\frac{1}{1.3}-\frac{1}{3.7}+\frac{1}{3.7}-\frac{1}{7.9}+\frac{1}{7.9}-\frac{1}{9.13}+\frac{1}{9.13}-\frac{1}{13.15}+\frac{1}{13.15}-\frac{1}{15.19}=1.31−3.71+3.71−7.91+7.91−9.131+9.131−13.151+13.151−15.191
=\frac{1}{1.3}-\frac{1}{15.19}=\frac{95}{285}-\frac{1}{285}=\frac{94}{285}=1.31−15.191=28595−2851=28594
b,=\frac{1}{6}.\left(\frac{6}{1.3.7}+\frac{6}{3.7.9}+\frac{6}{7.9.13}+\frac{6}{9.13.15}+\frac{6}{13.15.19}\right)b,=61.(1.3.76+3.7.96+7.9.136+9.13.156+13.15.196)
làm giống như trên
c,=\frac{1}{8}.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\right)c,=81.(1.2.31+2.3.41+3.4.51+...+48.49.501)
=\frac{1}{16}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\right)=161.(1.2.32+2.3.42+3.4.52+...+48.49.502)
=\frac{1}{16}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{50-48}{48.49.50}\right)=161.(1.2.33−1+2.3.44−2+3.4.55−3+...+48.49.5050−48)
=\frac{1}{16}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)=161.(1.21−2.31+2.31−3.41+3.41−4.51+...+48.491−49.501)
=\frac{1}{16}.\left(\frac{1}{2}-\frac{1}{2450}\right)=\frac{1}{16}.\left(\frac{1225}{2450}-\frac{1}{2450}\right)=\frac{153}{4900}=161.(21−24501)=161.(24501225−24501)=4900153
d,=\frac{5}{7}.\left(\frac{7}{1.5.8}+\frac{7}{5.8.12}+\frac{7}{8.12.15}+...+\frac{7}{33.36.40}\right)d,=75.(1.5.87+5.8.127+8.12.157+...+33.36.407)
=\frac{5}{7}.\left(\frac{8-1}{1.5.8}+\frac{12-5}{5.8.12}+\frac{15-8}{8.12.15}+...+\frac{40-33}{33.36.40}\right)=75.(1.5.88−1+5.8.1212−5+8.12.1515−8+...+33.36.4040−33)
=\frac{5}{7}.\left(\frac{1}{1.5}-\frac{1}{5.8}+\frac{1}{5.8}-\frac{1}{8.12}+\frac{1}{8.12}-\frac{1}{12.15}+...+\frac{1}{33.36}-\frac{1}{36.40}\right)=75.(1.51−5.81+5.81−8.121+8.121−12.151+...+33.361−36.401)
=\frac{5}{7}.\left(\frac{1}{5}-\frac{1}{1440}\right)=\frac{5}{7}.\left(\frac{288}{1440}-\frac{1}{1440}\right)=\frac{41}{288}=75.(51−14401)=75.(1440288−14401)=28841
P/S: . là nhân nha
1> a) \(\frac{5}{7}x4:\frac{5}{9}=\frac{5}{7}:\frac{5}{9}x4=\frac{5}{7}x\frac{9}{5}x4=\frac{9}{7}x4=\frac{9x4}{7}=\frac{36}{7}\)
\(b,8x\frac{2}{3}:\frac{1}{2}=8x\frac{2}{3}x\frac{2}{1}=8x2x\frac{2}{3}=16x\frac{2}{3}=\frac{32}{3}\)
\(c,6:\frac{3}{5}-\frac{7}{6}x\frac{6}{7}=6x\frac{5}{3}-1=10-1=9\)
\(\frac{21}{5}x\frac{10}{11}+\frac{57}{11}=\frac{42}{11}+\frac{57}{11}=\frac{99}{11}=9\)
2) a) \(\frac{35}{9}:x=\frac{35}{6}\)
\(x=\frac{35}{9}:\frac{35}{6}\)
\(x=\frac{35}{9}x\frac{6}{35}\)
\(x=\frac{2}{3}\)
b) \(\left(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}\right)x10-X=0\)
\(\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{5}-\frac{1}{6}\right)x10-X=0\)
\(\left(\frac{1}{1}-\frac{1}{6}\right)x10-X=10\)
\(\frac{5}{6}x10-X=0\)
\(X=\frac{5}{6}x10=\frac{25}{3}\)
Đúng nha !!!!
1/a/\(\frac{5}{7}\cdot4:\frac{5}{9}=\frac{20}{7}:\frac{5}{9}=\frac{20}{7}\cdot\frac{9}{5}=\frac{36}{7}\)
b/\(8\cdot\frac{2}{3}:\frac{1}{2}=\frac{16}{3}:\frac{1}{2}=\frac{16}{3}\cdot\frac{2}{1}=\frac{32}{3}\)
c/\(6:\frac{3}{5}-\frac{7}{6}\cdot\frac{6}{7}=6\cdot\frac{5}{3}-1=10-1=9\)
2/a/\(\frac{35}{9}:x=\frac{35}{6}\)
\(x=\frac{35}{9}:\frac{35}{6}=\frac{35}{9}\cdot\frac{6}{35}\)
\(x=\frac{2}{3}\)
b/\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}\right)\cdot10-x=0\)
\(\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\right)\cdot10-x=0\)
\(\left(\frac{30}{60}+\frac{10}{60}+\frac{5}{60}+\frac{2}{30}\right)\cdot10-x=0\)
\(\frac{47}{60}\cdot10-x=0\)
\(\frac{47}{6}-x=0\)
\(x=\frac{47}{6}-0\)
\(x=\frac{47}{6}\)
\(a,=\frac{7-1}{1.3.7}+\frac{9-3}{3.7.9}+\frac{13-7}{7.9.13}+\frac{15-9}{9.13.15}\)\(+\frac{19-13}{13.15.19}\)
\(=\frac{1}{1.3}-\frac{1}{3.7}+\frac{1}{3.7}-\frac{1}{7.9}+\frac{1}{7.9}-\frac{1}{9.13}+\frac{1}{9.13}-\frac{1}{13.15}+\frac{1}{13.15}-\frac{1}{15.19}\)
\(=\frac{1}{1.3}-\frac{1}{15.19}=\frac{95}{285}-\frac{1}{285}=\frac{94}{285}\)
\(b,=\frac{1}{6}.\left(\frac{6}{1.3.7}+\frac{6}{3.7.9}+\frac{6}{7.9.13}+\frac{6}{9.13.15}+\frac{6}{13.15.19}\right)\)
làm giống như trên
\(c,=\frac{1}{8}.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{50-48}{48.49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(=\frac{1}{16}.\left(\frac{1}{2}-\frac{1}{2450}\right)=\frac{1}{16}.\left(\frac{1225}{2450}-\frac{1}{2450}\right)=\frac{153}{4900}\)
\(d,=\frac{5}{7}.\left(\frac{7}{1.5.8}+\frac{7}{5.8.12}+\frac{7}{8.12.15}+...+\frac{7}{33.36.40}\right)\)
\(=\frac{5}{7}.\left(\frac{8-1}{1.5.8}+\frac{12-5}{5.8.12}+\frac{15-8}{8.12.15}+...+\frac{40-33}{33.36.40}\right)\)
\(=\frac{5}{7}.\left(\frac{1}{1.5}-\frac{1}{5.8}+\frac{1}{5.8}-\frac{1}{8.12}+\frac{1}{8.12}-\frac{1}{12.15}+...+\frac{1}{33.36}-\frac{1}{36.40}\right)\)
\(=\frac{5}{7}.\left(\frac{1}{5}-\frac{1}{1440}\right)=\frac{5}{7}.\left(\frac{288}{1440}-\frac{1}{1440}\right)=\frac{41}{288}\)
P/S: . là nhân nha
\(\frac{7}{8}>\frac{7}{9}>\frac{7}{10}>\frac{7}{11}>\frac{7}{15}\)
Tính :
\(a,\frac{1}{4}+\frac{3}{8}+\frac{5}{16}=\frac{4+6+5}{16}=\frac{15}{16}\)
\(b,\frac{3}{5}-\frac{1}{3}-\frac{1}{6}=\frac{18-10-5}{30}=\frac{3}{30}=\frac{1}{10}\)
\(c,\frac{4}{7}\times\frac{5}{8}\times\frac{7}{12}=\frac{5}{14}\times\frac{7}{12}=\frac{5}{24}\)
\(d,\frac{25}{28}:\frac{15}{14}\times\frac{6}{7}=\frac{25\times14\times6}{28\times15\times7}=\frac{5}{7}\)
1) a) \(\frac{5454}{5757}-\frac{171717}{191919}=\frac{18\times3\times101}{19\times3\times101}-\frac{17\times10101}{19\times10101}=\frac{18}{19}-\frac{17}{19}=\frac{1}{19}\)
b) \(\frac{6}{5}\times\frac{7}{6}\times\frac{8}{7}\times....\times\frac{2021}{2020}=\frac{6\times7\times8\times...\times2021}{5\times6\times7\times...\times2020}=\frac{2021}{5}\)
2) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}=2\times\frac{1}{6}+2\times\frac{1}{12}+2\times\frac{1}{20}+...+2\times\frac{1}{90}\)
\(=2\times\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{9\times10}\right)\)
\(=2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)=2\times\left(\frac{1}{2}-\frac{1}{10}\right)=2\times\frac{2}{5}=\frac{4}{5}\)
b)Vì \(a-1< a+1\)
=> \(\frac{1}{a-1}>\frac{1}{a+1}\)
1/ a x b = 1/a - 1/b