Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(2x+7\right)^4=10^{11}:10^7\)
\(\Rightarrow\left(2x+7\right)^4=10^4\)
\(\Rightarrow2x+7=10\)
\(\Rightarrow2x=10-7\)
\(\Rightarrow2x=3\)
\(\Rightarrow x=\dfrac{3}{2}\) hay \(x=1,5\)
b, \(5^{x-1}.7^{x-1}=25.49\)
\(\Rightarrow\)\(5^{x-1}.7^{x-1}=5^2.7^2\)
\(\Rightarrow\left\{{}\begin{matrix}5^{x-1}=5^2\\7^{x-1}=7^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-1=2\\x-1=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\x=3\end{matrix}\right.\)
c, \(\left(x-5\right)^{2018}=9.\left(x-5\right)^{2016}\)
\(\Rightarrow\dfrac{\left(x-5\right)^{2018}}{\left(x-5\right)^{2016}}=9.\dfrac{\left(x-5\right)^{2016}}{\left(x-5\right)^{2016}}\)
\(\Rightarrow\left(x-5\right)^2=9\)
\(\Leftrightarrow\left(x-5\right)^2=3^2\)
\(\Rightarrow x-5=3\)
\(\Rightarrow x=3+5\)
\(\Rightarrow x=8\)
555 x 5510 = 5515
666612 x 666610 = 666622
510 x 51 = 511
221 x 2210 = 2211
101 x 102 = 1012
555x5510=5515
666612x666610=666622
510x51=511
221x 2210=2211
101x102=103
2.
\(\left(1+2+3+...+100\right)\cdot\left(1^2+2^2+3^2+...+10^2\right)\cdot\left(65\cdot111-13\cdot15\cdot37\right)\\ =\left(1+2+3+...+100\right)\cdot\left(1^2+2^2+3^2+...+10^2\right)\cdot\left(65\cdot111-13\cdot5\cdot3\cdot37\right)\\=\left(1+2+3+...+100\right)\cdot\left(1^2+2^2+3^2+...+10^2\right)\cdot\left[65\cdot111-\left(13\cdot5\right)\cdot\left(3\cdot37\right)\right]\\ =\left(1+2+3+...+100\right)\cdot\left(1^2+2^2+3^2+...+10^2\right)\cdot\left[65\cdot111-65\cdot111\right]\\ =\left(1+2+3+...+100\right)\cdot\left(1^2+2^2+3^2+...+10^2\right)\cdot0\\ =0\)
3 phần trên đễ quá mik ko làm mik chỉ làm phàn 4 thôi nhé
4) ta có: (x-3)^x+2=(x-3)^x+6
=>(x-3)^x*(x-3)^2=(x-3)^x*(x-3)^6
=>(x-3)^x=(x-3)^x*(x-3)^4
=>(x-3)^x*(x-3)^4-(x-3)^x*1=0
=>(x-3)^x*((x-3)^4-1)=0
=>(x-3)^x=0 hoặc (x-3)^4-1=0
còn lại cậu tự làm nha nó đẽ mà
Quy ước toán học dấu x = dấu .
===================================
1. (3x - 5)4 = 28
<=> (3x - 5)4 = 44
=> Ta có 2 trường hợp :
* TH1 : \(3^x-5=4\Rightarrow3^x=9\Rightarrow x=2\)
* TH2 : \(3^x-5=-4\Rightarrow3^x=1\Rightarrow x=0\)
Vậy x=1 hoặc x=0
\(x^{10}=1^x\\ =>x^{10}=1\\ =>x^{10}=\left(\pm1\right)^{10}\\ =>x=\pm1\)
Vậy: ...