Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài đã cho là trung điểm thì tức là nó thẳng hàng và điểm đó nằm giữa A và B, chia thành 2 đoạn bằng nhau
Bạn ơi lỡ trung điểm không phải là thẳng hàng thì sao
+ Hình vẽ :
M là trung điểm của AB cũng đâu có thẳng hàng đâu ....
1. chứng minh góc ABC là góc bẹt
2. chứng minh đoạn AB hoặc AC cùng song song vs 1 đoạn thẳng
-Chứng minh góc 180 độ(góc bẹt)
-Dựa vào những tính chất của trực tâm, trọng tâm
-Dựa vào tính chất đường trung trực, tia phân giác
Ba điểm thẳng hàng khi:
+) Ba điểm cùng nằm trên một đường thẳng
+) Có một điểm và chỉ một điểm nằm giữa hai điểm còn lại
Bài tập:
1) Vẽ ba điểm A, B, C thẳng hàng sao cho điểm B nằm giữa hai điểm A và C. Có mấy trường hợp hình vẽ?
2) a) Cho ba điểm A, B, C thẳng hàng thì có mấy trường hợp hình vẽ?
b) Trong mỗi trường hợp, có mấy điểm nằm giữa hai điểm còn lại?
c) Hãy nói cách vẽ ba điểm ko thẳng hàng
vì nằm trên đường thẳng đó
vì nó thuộc đường thẳng đó
Lâu rồi k giải toán, giờ trở lại vs Toán thân iu
Ta có hình vẽ:
a/ Xét tam giác ABD và tam giác CMD có:
AD = DC (vì D là trung điểm AC)
góc ADB = góc CDM (đối đỉnh)
DB = DM (GT)
Vậy tam giác ABD = tam giác CMD (c.g.c)
=> AB = CM (2 cạnh tương ứng)
Ta có: tam giác ABD = tam giác CMD
=> góc BAC = góc MCA (2 góc tương ứng)
b/ Xét tam giác AMD và BCD có:
AD = DC (vì D là trung điểm AC)
góc ADM = góc BDC (đối đỉnh)
DM = DB (GT)
Vậy tam giác AMD = tam giác BCD (c.g.c)
=> góc MAD = góc DCB (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AM // BC (đpcm)
c/ Xét tam giác ABC và tam giác AMC có:
AC: cạnh chung
AB = CM (do tam giác ABD = tam giác CMD)
AM = BC (do tam giác AMD = tam giác BCD)
=> tam giác ABC = tam giác AMC (c.c.c)
d/ Ta có: AB = CM (câu a)
Mà I là trung điểm AB
và K là trung điểm CM
=> AI = IB = MK = KC
Xét tam giác IAD và tam giác KCD có:
AI = CK (đã chứng minh trên)
góc BAC = góc MCA (câu a)
AD = DC (vì D là trung điểm AC)
=> tam giác IAD = tam giác KCD (c.g.c)
=> góc IDA = góc KDC (2 góc tương ứng)
Ta có: \(\widehat{ADM}\)+\(\widehat{MDK}\)+\(\widehat{KDC}\)=1800
=> góc ADM + góc MDK + góc IDA = 1800
=> góc IDK = 1800
hay K,D,I thẳng hàng
Khi 3 điểm nào đó nằm trên cùng 1 đường thảng ta nói chúng thảng hàng .
có 3 cách bạn ạ
C1 : chứng minh 1 góc bằng 180 độ
C2: coi như 3 điểm đó chưa thẳng hàng ta tách ra làm 2 đoạn chẳng hạn AC và CB. Gọi d là một đường thẳng ko giao hay cx ko trùng với một trong 2 đoạn AC, CB . Cần Chứng minh AC//d Cb//d là đk vì khi đó AC, Cb trùng nhau suy ra A<B<C thẳng hàng
C3 : Chứng minh điểm nằm giữa là trung điểm của đoạn thẳng tạo bởi 2 điểm còn lại
cách 1 AB //a
AC//a
ABC thẳng hàng
cách 2 ABD + DBC = 180 độ thì ABC tgawngr hàng
cách 3 ABC cùng thuộc một đường trung trưc của đoạn thẳng
Thiếu bạn à
C1: 2 đoạn thẳng song song với nhau mà có chung 1 điểm sẽ trùng nhau (tiên đề ơ clit)
c/m: ab // bc
bd// bc
=> a ; b ; d thẳng hàng
c2: góc bẹt: nếu góc abc + góc abd = 180 đô thì a,b,c thẳng hàng
c3: Chứng mình trung tuyến và trọng tâm tam giác
Nếu: An là trung tuyến tam giác abc
Am là trung tuyến tam giác abc
Mà d là giao điểm am và an => d là trọng tâm tam giác => an đi qua d hay am đi qua d ( tam giác có 3 đường trung tuyến nên nếu có đường thứ 3 thì nó cũng đi qua d)
=> a b d thẳng hàng hay a b c thẳng hàng ( định lý)
Hay: c/m 1 điểm là trọng tâm mà không có 2 đường trung tuyến đi qua:
C/m: an là trung tuyến tam giác abc ( c/m hay giả thiết có sẵn)
mà: trên an có d
có: ad = 2/3 an ( hay dn = 1/3 an => ad = 2/3 an)
=> d là trọng tâm tam giác
=> v.v...
c4: C/m cùng nằm trên đương trung trực
Xét tam giácABC:
Ta có: OB = OC (tự c'm hay gt có sẵn)
Tương tự OB = OC: IB = IC : DC=DB ( tự /cm hay,.)
=> O ; I ; D thuộcđường trung trực của tam giác ABC
Lưu ý: Tam giác ABC chắc chắn PHẢI CÂN (tự c/m nhé)
......
Nên A cũng thuộc đường trung trực (có thể làm ít hơn nếu chỉ c/m 2 đỉm thẳng hàng hoặc nhìu hơn)
C5: C/m cùng nằm trên tia p/g
Nếu : MD vuông với Ab
ME vuông với ac
mà: Md = me
=> M thuộc tia phân giác của góc bac
....
Tự c/m hai điểm o, i nha
=> m, i , d thẳng hàng