Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) VD: \(a=4;b=5\) có \(a^2+b^2=4^2+5^2=16+25=41\) là số nguyên tố
Mà \(a+b=4+5=9\) là hợp số
\(\Rightarrow\)Mệnh đề " Nếu \(a^2+b^2\) là số nguyên tố thì \(a+b\)cũng là số nguyên tố " sai
b) Ta có : \(a^2-b^2=\left(a^2-ab\right)+\left(ab-b^2\right)\)
\(\Rightarrow a^2-b^2=a\left(a-b\right)+b\left(a-b\right)\)
\(\Rightarrow a^2-b^2=\left(a-b\right)\left(a+b\right)\)
+) Nếu \(a-b>1\)
\(\Rightarrow a^2-b^2⋮\left(a+b\right)\) và \(a^2-b^2⋮\left(a-b\right)\)
\(\Rightarrow a^2-b^2\) là hợp số
\(\Rightarrow\)Mâu thuẫn
\(\Rightarrow a-b=1\)
\(\Rightarrow a^2-b^2=a+b\)
Mà \(a^2-b^2\) là số nguyên tố
\(\Rightarrow a+b\) là số nguyên tố
\(\Rightarrow\) Mệnh đề : " Nếu \(a>b\) và \(a^2-b^2\)là số nguyên tố thì \(a+b\) cũng là số nguyên tố " đúng
tổng, hiệu sau là số nguyên tố hay hợp số
a. 3.5.7.9.11 + 11.35
b. 5.6.7.8 + 9.77
c. 105 + 11
d. 103 - 8
a. =5*7*11*(3*9+1) chia hết cho 5,7,11 => là hợp số
b. =7*(5*6*8+9*11) chia hết cho 7 => là hợp số
c. =100011 chia hết cho 3 => là hợp số
d. =992 chia hết cho 2 => là hợp số
a) A={-29;-28;-27;...;98;99;100}
A={x\(\in\)A|-30<x<100}
b) Tập hợp A có:
\(\frac{100-\left(-30\right)}{1}+1=131\)(phần tử)
c) {2;3;5;7;11;13;17;19}
d) Tổng các phần tử của A là: \(\frac{\left[100+\left(-30\right)\right].131}{2}=4585\)
Vì p,q đều là số nguyên tố mà p-q cũng là số nguyên tố nên p và q khác tính chẵn lẻ.
Suy ra: q=2 (Vì p>q; p, q đều lad số nguyên tố)
+, Nếu p=3 : Thỏa mãn.
+, Nếu p>3 : Xét 2 TH: p=3k+1 (k thuộc N*) hoặc p=3k+2(k thuộc N*)
-p=3k+1 => p+q=3k+1+2=3k+3 là hợp số
-p=3k+2 : Tương tự có p-q là hợp số.
Vậy q=2, p=3.
Ta có các số hạng 32 ; 33;.....;3100 đều chia hết cho 3
mà 3 chia hết cho 3 => a chia hết cho3 => a là hợp số
Ta có số chính phương ko chia hết cho 3=> A ko phải số cchinhs phương
1, Ta có: p, p+1, p+2 là 3 số liên tiếp nên chắc chắn có 1 số chia hết cho 3 -> p+1 hoặc p+2 chia hết cho 3
p+2+6=p+8 là snt nên ko chia hết cho 3 nên p+1 chia hết cho 3 -> p+1+99 = p+100 chia hết cho 3 -> là hợp số
2, a, Nếu p có dạng 6k,6k+2,6k+3,6k+4 thì chia hết cho 2 hoặc 3
b, Do p là snt > 3 nên 8p ko chia hết cho 3. Trong 3 số liên tiếp 8p,8p+1,8p+2 có 8p và 8p+1 ko chia hết cho 3 nên 8p+2 chia hết cho 3.
Chia cho 2, do(2,3) = 1 nên 4p+1 chia hết cho 3 là hợp số
a) 3.7.9.12.14 chia hết cho 3
27 chia hết cho 3 => 3.7.9.12.14 + 27 chia hết cho 3=> là hợp số
b) 37.24.3.15 chia hết cho 3
9 chia hết cho 3=> 37.24.3.15 - 9 chia hết cho 3 => là hợp số