K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 5 2020

Tham khảo lời giải tại đây:

Câu hỏi của Quanghoa Ngo - Toán lớp 9 | Học trực tuyến

28 tháng 3 2018

\(\text{Ta co}:a+b=c+d=1000\text{ va }\frac{a}{c}=\frac{b}{d}\)

Áp dụng dãy tỉ số = nhau, ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{1000}{1000}=1\)

\(\Rightarrow MAX:\frac{a}{c}+\frac{b}{d}=1+1=2\)

28 tháng 3 2018

mình đâu cho dữ liệu a/c = b/d

Lời giải:

Không mất tổng quát, giả sử $\frac{a}{c}\leq \frac{b}{d}\Rightarrow ad\leq bc$

$\Rightarrow \frac{a}{c}\leq \frac{a+b}{c+d}\leq \frac{b}{d}$

$\Leftrightarrow \frac{a}{c}\leq 1\leq \frac{b}{d}$

Nếu $b\leq 998$:

$d\geq 1\Rightarrow \frac{b}{d}\leq 998$. Kết hợp với $\frac{a}{c}\leq 1$ suy ra $P\leq 999(1)$

Nếu $b=999\Rightarrow a=1$

$P=\frac{1}{c}+\frac{999}{d}=\frac{1}{c}+\frac{999}{1000-c}$

$=\frac{1000+998c}{c(1000-c)}=\frac{1000+998c}{(c-1)(999-c)+999}$

Vì $1\leq c\leq 999\Rightarrow 10000+998c\leq 1000+998.999$

$(c-1)(999-c)+999\geq 999$

$\Rightarrow P\leq \frac{1000+998.999}{999}=999+\frac{1}{999}(2)$

Từ $(1);(2)\Rightarrow P_{\max}=999+\frac{1}{999}$ khi $a=d=1; b=c=999$

18 tháng 6 2016

a/b+c/d lớn nhất khi a/b và c/d lớn nhất. 

Ta có: a/b lớn nhất khi b là số tự nhiên bé nhất, mà \(b\ne0\Rightarrow b=1\)

                                                                           \(a+b=100\)      

                                                                           \(a+1=100\)

                                                                           \(\Rightarrow a=100-1\)

                                                                            \(\Rightarrow a=99\)

Tương tự như câu trên. Ta có:c/d lớn nhất khi d là số tự nhiên bé nhất, mà \(d\ne0\Rightarrow d=1\)

                                                                            \(c+d=100\)

                                                                            \(c+1=100\)

                                                                                \(\Rightarrow c=100-1\)

                                                                                \(\Rightarrow c=99\)

AH
Akai Haruma
Giáo viên
17 tháng 5 2020

Bạn tham khảo lời giải tại link sau:

Câu hỏi của Quanghoa Ngo - Toán lớp 9 | Học trực tuyến

14 tháng 12 2021

\(A=\dfrac{a}{a+b+c-c}+\dfrac{b}{a+b+c-a}+\dfrac{c}{a+b+c-b}\\ A=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\\ \Rightarrow A>\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=1\left(1\right)\\ A< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow1< A< B\\ \Rightarrow A\notin Z\)

Vì \(\frac{c}{b}+\frac{d}{c}=\frac{c+d}{b+c}=1\)

Mà \(a+b=c+d=25\)

Nên \(\frac{c}{b}=\frac{d}{b}\)

Vậy \(M=\frac{c}{b}+\frac{d}{b}\le2\)

Dấu ''='' xảy ra khi \(a=b=c=d=\frac{25}{2}\)

21 tháng 4 2021

sai r bạn