\(3\left(x^2-2x-xy\right)+y^2=0\)       là:

Giúp!!!!!!!!!!...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2019

                                                        Bài giải

\(3\left(x^2-2x-xy\right)+y^2=0\)

\(3x^2-6x-3xy+y^2=0\)

\(x\left(3x-6\right)-y\left(3x-y\right)=0\)

===> Chịu 

Không biết làm đến đó có đúng không ! Bạn thủ nghĩ tiếp nha ! 

10 tháng 9 2019

Hiccccccccccccc

12 tháng 9 2017

ĐKXĐ : x;y > 0

\(\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)=3\sqrt{y}\left(\sqrt{x}+5\sqrt{y}\right)\)

\(\Leftrightarrow x+\sqrt{xy}=3\sqrt{xy}+15y\)

\(\Leftrightarrow x=2\sqrt{xy}+15y\)

\(\Leftrightarrow\left(x-2\sqrt{xy}+y\right)-16y=0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2-\left(4\sqrt{y}\right)^2=0\)

\(\Leftrightarrow\left(\sqrt{x}-5\sqrt{y}\right)\left(\sqrt{x}+3\sqrt{y}\right)=0\)

Mà theo đk x;y > 0 nên \(\sqrt{x}+3\sqrt{y}>0\) Do đó \(\sqrt{x}-5\sqrt{y}=0\Rightarrow\sqrt{x}=5\sqrt{y}\Rightarrow x=25y\)

Thay vào C ta được :

\(C=\frac{2.25y+\sqrt{25y.y}+3y}{25y+\sqrt{25y.y}-y}=\frac{50y+5y+3y}{25y+5y-y}=2\)

23 tháng 8 2019

mong mọi người nhanh giúp

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

7 tháng 11 2018

\(a)\)\(x+xy+y=-6\)

\(\Leftrightarrow\)\(\left(x+1\right)\left(y+1\right)=-5\)

Lập bảng xét TH ra là xong 

\(b)\) CM : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\)\(\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\)\(x^2+2xy+y^2-4xy\ge0\)

\(\Leftrightarrow\)\(\left(x-y\right)^2\ge0\) ( luôn đúng ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)

Xin thêm 1 slot đi hok về làm cho -,- 

7 tháng 11 2018

\(b)\) CM : \(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\)

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{1+1}=\frac{1}{2}\left(x+y\right)^2\) ( bđt Cauchy-Schawarz dạng Engel ) 

Ta có : 

\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+2017\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}+2017\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}+2017=\frac{\left(2+\frac{4}{2}\right)^2}{2}+2017=2025\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1\)

Bài này còn có cách khác là sử dụng tính chất tổng 2 phân số nghịch đảo nhau nhá :)) 

Chúc bạn học tốt ~ 

22 tháng 5 2017

x,y>0 => theo bdt AM-GM thì x+y >/ 2 căn (xy)=2 , x^2+y^2 >/ 2xy=2 (do xy=1)

P=(x+y+1)(x^2+y^2)+4/(x+y)

>/ 2(x+y+1)+4/(x+y)=[(x+y)+4/(x+y)]+(x+y+2)

x,y>0=>x+y>0 => theo bdt AM-GM thì P >/ 2.2+2+2=8 

minP=8 

27 tháng 12 2018

thừa chữ 1 chữ xy nha