Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét tứ giác OAEI có \(\widehat{OAI}+\widehat{OEI}=90^0+90^0=180^0\)
nên OAEI là tứ giác nội tiếp
Xét tứ giác OEBK có \(\widehat{OEK}=\widehat{OBK}=90^0\)
nên OEBK là tứ giác nội tiếp
2: Ta có: OAEI là tứ giác nội tiếp
=>\(\widehat{OIE}=\widehat{OAE}=\widehat{OAB}\left(1\right)\)
Ta có: OEBK là tứ giác nội tiếp
=>\(\widehat{OKE}=\widehat{OBE}=\widehat{OBA}\left(2\right)\)
Ta có: ΔOAB cân tại O
=>\(\widehat{OAB}=\widehat{OBA}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\widehat{OIE}=\widehat{OKE}\)
=>\(\widehat{OIK}=\widehat{OKI}\)
=>ΔOKI cân tại O
3: Xét ΔOAI vuông tại A và ΔOBK vuông tại B có
OA=OB
OI=OK
Do đó: ΔOAI=ΔOBK
=>AI=BK
4: Xét tứ giác OACB có \(\widehat{OAC}+\widehat{OBC}=90^0+90^0=180^0\)
nên OACB là tứ giác nội tiếp
=>\(\widehat{OAB}=\widehat{OCB}\)
mà \(\widehat{OAB}=\widehat{OIK}\)
nên \(\widehat{OIK}=\widehat{OCK}\)
=>OICK là tứ giác nội tiếp
Gọi giao điểm của A 1 A 8 và A 3 A 16 là M
Vì đường tròn được chia thành 20 cung
bằng nhau nên số đo của mỗi cung là :
360 ° : 20 = 18 °