Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt P(y)=0
⇔3y-6=0
⇔3y=6
hay y=2
Vậy: S={2}
Đặt N(x)=0
\(\Leftrightarrow\frac{1}{3}-2x=0\)
\(\Leftrightarrow2x=\frac{1}{3}\)
hay \(x=\frac{1}{3}:2=\frac{1}{3}\cdot\frac{1}{2}=\frac{1}{6}\)
Vậy: \(S=\left\{\frac{1}{6}\right\}\)
Đặt D(z)=0
⇔\(z^3-27=0\)
\(\Leftrightarrow z^3=27\)
hay z=3
Vậy: S={3}
Đặt M(x)=0
⇔\(x^2-4=0\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow x=\pm2\)
Vậy: S={2;-2}
Đặt C(y)=0
\(\Leftrightarrow\sqrt{2}y+3=0\)
\(\Leftrightarrow\sqrt{2}y=-3\)
\(\Leftrightarrow y=\frac{-3}{\sqrt{2}}=\frac{-3\sqrt{2}}{2}\)
Vậy: \(S=\left\{\frac{-3\sqrt{2}}{2}\right\}\)
b) Ta có: \(x^4\ge0\forall x\)
\(\Rightarrow x^4+1\ge1>0\forall x\)
hay Q(x) vô nghiệm(đpcm)
1
\(\frac{x-3}{4}=\frac{y+5}{3}=\frac{z-4}{5}=\frac{2x-6}{8}=\frac{3y+15}{9}=\frac{4z-16}{20}\)
\(=\frac{2x+3y-4z-6+15+16}{-3}=-\frac{100}{3}\)
Làm nốt
2
\(\left|x-2\right|\ge0\) dấu "=" xảy ra tại x=2
\(\left(x-y\right)^2\ge0\) dấu "=" xảy ra tại x=y
\(3\sqrt{z^2+9}\ge3\sqrt{9}=9\) dấu "=" xảy ra tại z=0
\(\Rightarrow C\ge0+0+9+16=25\) dấu "=" xảy ra tại x=y=2;z=0
5
Chứng minh \(1< M< 2\) là OK
Bài 1 :
\(A=x^2-2xy^2+y^4=\left(x-y^2\right)^2=-\left(y^2-x\right)^2\)
Mà \(B=-\left(y^2-x\right)^2\)
Nên ta có : đpcm
Bài 2
Đặt \(\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)
TH1 : x = -1
TH2 : x = 2
TH3 : x = 1/2
Bài 4 :
a, \(\left(2x+3\right)\left(5-x\right)=0\Leftrightarrow x=-\frac{3}{2};5\)
b, \(\left(x-\frac{1}{2}\right)\left(3x+1\right)\left(2-x\right)=0\Leftrightarrow x=\frac{1}{2};-\frac{1}{3};2\)
c, \(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;-2\)
d, \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow x=0;1\)